Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mechanism of membrane-associated steps in tail-anchored protein insertion

Abstract

Tail-anchored (TA) membrane proteins destined for the endoplasmic reticulum are chaperoned by cytosolic targeting factors that deliver them to a membrane receptor for insertion. Although a basic framework for TA protein recognition is now emerging, the decisive targeting and membrane insertion steps are not understood. Here we reconstitute the TA protein insertion cycle with purified components, present crystal structures of key complexes between these components and perform mutational analyses based on the structures. We show that a committed targeting complex, formed by a TA protein bound to the chaperone ATPase Get3, is initially recruited to the membrane through an interaction with Get2. Once the targeting complex has been recruited, Get1 interacts with Get3 to drive TA protein release in an ATPase-dependent reaction. After releasing its TA protein cargo, the now-vacant Get3 recycles back to the cytosol concomitant with ATP binding. This work provides a detailed structural and mechanistic framework for the minimal TA protein insertion cycle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstitution of TA protein insertion with purified components.
Figure 2: Get2 fragment complex with ADP·AlF 4 -bound Get3.
Figure 3: Get1 fragment complex with Get3.
Figure 4: Mutational analysis of the function of Get1, Get2 and Get3.
Figure 5: ATP-dependent recycling of empty Get3 from Get1.
Figure 6: Model for TA protein insertion.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for S. cerevisiae Get3 in complex with Get1(21–104) and for 2+-ADP·AlF4 2-bound S. cerevisiae Get3 in complex with Get2(1–38) have been deposited in the Protein Data Bank under accession codes 3ZS8 and 3ZS9, respectively.

References

  1. Kutay, U., Hartmann, E. & Rapoport, T. A. A class of membrane proteins with a C-terminal anchor. Trends Cell Biol. 3, 72–75 (1993)

    Article  CAS  Google Scholar 

  2. Beilharz, T., Egan, B., Silver, P. A., Hofmann, K. & Lithgow, T. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae . J. Biol. Chem. 278, 8219–8223 (2003)

    Article  CAS  Google Scholar 

  3. Kalbfleisch, T., Cambon, A. & Wattenberg, B. W. A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic 8, 1687–1694 (2007)

    Article  CAS  Google Scholar 

  4. Kriechbaumer, V. et al. Subcellular distribution of tail-anchored proteins in Arabidopsis . Traffic 10, 1753–1764 (2009)

    Article  CAS  Google Scholar 

  5. Favaloro, V., Spasic, M., Schwappach, B. & Dobberstein, B. Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J. Cell Sci. 121, 1832–1840 (2008)

    Article  CAS  Google Scholar 

  6. Favaloro, V., Vilardi, F., Schlecht, R., Mayer, M. P. & Dobberstein, B. Asna1/TRC40-mediated membrane insertion of tail-anchored proteins. J. Cell Sci. 123, 1522–1530 (2010)

    Article  CAS  Google Scholar 

  7. Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008)

    Article  CAS  Google Scholar 

  8. Stefanovic, S. & Hegde, R. S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007)

    Article  CAS  Google Scholar 

  9. Borgese, N. & Fasana, E. Targeting pathways of C-tail-anchored proteins. Biochim. Biophys. Acta 1808, 937–946 (2011)

    Article  CAS  Google Scholar 

  10. Sherrill, J., Mariappan, M., Dominik, P., Hegde, R. S. & Keenan, R. J. A conserved archaeal pathway for tail-anchored membrane protein insertion. Traffic 10.1111/j.1600-0854.2011.01229.x (3 July 2011)

  11. Borgese, N. & Righi, M. Remote origins of tail-anchored proteins. Traffic 11, 877–885 (2010)

    Article  CAS  Google Scholar 

  12. Wang, F., Brown, E. C., Mak, G., Zhuang, J. & Denic, V. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40, 159–171 (2010)

    Article  CAS  Google Scholar 

  13. Mariappan, M. et al. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466, 1120–1124 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Chang, Y.-W. et al. Crystal structure of Get4-Get5 complex and its interactions with Sgt2, Get3, and Ydj1. J. Biol. Chem. 285, 9962–9970 (2010)

    Article  CAS  Google Scholar 

  15. Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl Acad. Sci. USA 106, 21131–21136 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Suloway, C. J., Chartron, J. W., Zaslaver, M. & Clemons, W. M., Jr Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl Acad. Sci. USA 106, 14849–14854 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Yamagata, A. et al. Structural insight into the membrane insertion of tail-anchored proteins by Get3. Genes Cells 15, 29–41 (2010)

    Article  CAS  Google Scholar 

  20. Hu, J., Li, J., Qian, X., Denic, V. & Sha, B. The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion. PLoS ONE 4, e8061 (2009)

    Article  ADS  Google Scholar 

  21. Auld, K. L. et al. The conserved ATPase Get3/Arr4 modulates the activity of membrane-associated proteins in Saccharomyces cerevisiae . Genetics 174, 215–227 (2006)

    Article  CAS  Google Scholar 

  22. Leznicki, P., Clancy, A., Schwappach, B. & High, S. Bat3 promotes the membrane integration of tail-anchored proteins. J. Cell Sci. 123, 2170–2178 (2010)

    Article  CAS  Google Scholar 

  23. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005)

    Article  CAS  Google Scholar 

  24. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Chartron, J. W., Suloway, C. J. M., Zaslaver, M., a & Clemons, W. M. Structural characterization of the Get4/Get5 complex and its interaction with Get3. Proc. Natl Acad. Sci. USA 107, 12127–12132 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Renthal, R. Helix insertion into bilayers and the evolution of membrane proteins. Cell. Mol. Life Sci. 67, 1077–1088 (2010)

    Article  CAS  Google Scholar 

  27. Brambillasca, S. et al. Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. EMBO J. 24, 2533–2542 (2005)

    Article  CAS  Google Scholar 

  28. Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol. Biol. 619, 339–363 (2010)

    Article  CAS  Google Scholar 

  29. Brambillasca, S., Yabal, M., Makarow, M. & Borgese, N. Unassisted translocation of large polypeptide domains across phospholipid bilayers. J. Cell Biol. 175, 767–777 (2006)

    Article  CAS  Google Scholar 

  30. Panzner, S., Dreier, L., Hartmann, E., Kostka, S. & Rapoport, T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81, 561–570 (1995)

    Article  CAS  Google Scholar 

  31. Rothblatt, J. A. & Meyer, D. I. Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell 44, 619–628 (1986)

    Article  CAS  Google Scholar 

  32. Hansen, W., Garcia, P. D. & Walter, P. In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-alpha-factor. Cell 45, 397–406 (1986)

    Article  CAS  Google Scholar 

  33. Gorlich, D. & Rapoport, T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75, 615–630 (1993)

    Article  CAS  Google Scholar 

  34. Fons, R. D., Bogert, B. A. & Hegde, R. S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160, 529–539 (2003)

    Article  CAS  Google Scholar 

  35. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  36. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  38. Deshaies, R. J. & Schekman, R. SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. J. Cell Biol. 109, 2653–2664 (1989)

    Article  CAS  Google Scholar 

  39. DeLano, W. L. PyMOL Molecular Viewerhttp://www.pymol.org〉 (2002)

Download references

Acknowledgements

Data were collected at beamline 21-IDG at the Advanced Photon Source (APS), Argonne National Laboratory, and we thank the beamline staff for support. We thank T. Dever for yeast strains, T. Rapoport for the Sec61α antibody, M. Downing for technical assistance, members of the Hegde, Keenan and E. Perozo labs and D. Freymann for advice, and A. Shiau and S. Shao for discussions and comments on the manuscript. Use of the APS, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. This work was supported by the Intramural Research Program of the NIH (to R.S.H.), the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry (to R.J.K. and E.B.), an Edward Mallinckrodt, Jr. Foundation Grant (to R.J.K.) and NIH Grant R01 GM086487 (to R.J.K.).

Author information

Authors and Affiliations

Authors

Contributions

A.M., M.D. and E.B. produced, purified and characterized recombinant Get1, Get2 (full length and fragments) and Get3. M.M. and R.S.H. performed the reconstitution experiments, including the substrate release and membrane insertion assays. A.M., M.D. and R.J.K. carried out crystallization and structure determination as well as the interaction analyses. R.S.H. and R.J.K. designed the project. M.M., R.S.H. and R.J.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ramanujan S. Hegde or Robert J. Keenan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-20 with legends, Supplementary Table 1, a Supplementary Discussion, Supplementary Notes and Supplementary References. (PDF 16767 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariappan, M., Mateja, A., Dobosz, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61–66 (2011). https://doi.org/10.1038/nature10362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10362

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing