Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An ancient recipe for flood-basalt genesis

Abstract

Large outpourings of basaltic lava have punctuated geological time, but the mechanisms responsible for the generation of such extraordinary volumes of melt are not well known1. Recent geochemical evidence suggests that an early-formed reservoir may have survived in the Earth’s mantle for about 4.5 billion years (ref. 2), and melts of this reservoir contributed to the flood basalt emplaced on Baffin Island about 60 million years ago3,4,5. However, the volume of this ancient mantle domain and whether it has contributed to other flood basalts is not known. Here we show that basalts from the largest volcanic event in geologic history—the Ontong Java plateau1,6,7—also exhibit the isotopic and trace element signatures proposed for the early-Earth reservoir2. Together with the Ontong Java plateau, we suggest that six of the largest volcanic events that erupted in the past 250 million years derive from the oldest terrestrial mantle reservoir. The association of these large volcanic events with an ancient primitive mantle source suggests that its unique geochemical characteristics—it is both hotter (it has greater abundances of the radioactive heat-producing elements) and more fertile than depleted mantle reservoirs—may strongly affect the generation of flood basalts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lavas from LIPs that have Nd isotopic compositions within the range expected for a non-chondritic primitive mantle exhibit Pb isotopic compositions that plot near the geochron.
Figure 2: Primitive mantle 13 normalized trace-element patterns of OJP lavas compared to high 3 He/ 4 He lavas from BIWG.

Similar content being viewed by others

References

  1. Coffin, M. C. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994)

    Article  ADS  Google Scholar 

  2. Jackson, M. G. et al. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Graham, D. W. et al. Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. Earth Planet. Sci. Lett. 160, 241–255 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: Constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Tejada, M. L. G., Mahoney, J. J., Neal, C. R., Duncan, R. A. & Petterson, M. G. Basement geochemistry and geochronology of central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. J. Petrol. 43, 449–484 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Tejada, M. L. G. et al. in Origin and Evolution of the Ontong Java Plateau (eds Fitton, J. G., Mahoney, J. J., Wallace, P. J. & Saunders, A. D. ) 133–150 (Geological Society of London Special Publication 229, 2004)

    Google Scholar 

  8. Jacobsen, S. B. & Wasserburg, G. J. The mean age of mantle and crustal reservoirs. J. Geophys. Res. 84, 7411–7427 (1979)

    Article  ADS  CAS  Google Scholar 

  9. Zindler, A. & Hart, S. R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986)

    Article  ADS  CAS  Google Scholar 

  10. DePaolo, D. J. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim. Cosmochim. Acta 44, 1185–1196 (1980)

    Article  ADS  CAS  Google Scholar 

  11. Jagoutz, E. et al. The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Proc. Lunar Planet. Sci. Conf. X, 203l–2050 (1979)

    Google Scholar 

  12. Palme, H. & O’Neill, H. S. C. in The Mantle and Core: Treatise on Geochemistry (ed. Carlson, R. W. ) Vol. 2 1–38 (Elsevier, 2003)

    Google Scholar 

  13. McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Boyet, M. & Carlson, R. W. A new geochemical model for the Earth’s mantle inferred from 146Sm–142Nd systematic. Earth Planet. Sci. Lett. 250, 254–268 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Caro, G. & Bourdon, B. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle–crust system. Geochim. Cosmochim. Acta 74, 3333–3349 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Fitton, J. G. & Goddard, M. in Origin and Evolution of the Ontong Java Plateau (eds Fitton, J. G., Mahoney, J. J., Wallace, P. J. & Saunders, A. D. ) 151–178 (Geological Society of London Special Publication 229, 2004)

    Google Scholar 

  19. Carlson, R. W. Physical and chemical evidence on the cause and source characteristics of flood basalt volcanism. Aust. J. Earth Sci. 38, 525–544 (1991)

    Article  ADS  Google Scholar 

  20. Hawkesworth, C. J., Marsh, J. S., Duncan, A. R., Erlank, A. J. & Norry, M. J. in Petrogenesis of the Volcanic Rocks of the Karoo Province (ed. Erlank, A. J. ) 341–354 (Geological Society of South Africa Special Publication, 1984)

    Google Scholar 

  21. Heinonen, J. S., Carlson, R. W. & Luttinen, A. V. Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: a key to the origins of the Jurassic Karoo large igneous province. Chem. Geol. 277, 227–244 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Carlson, R. W., Czamanske, G., Fedorenko, V. & Ilupin, I. A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkalic magmas and flood basalts. Geochem. Geophys. Geosyst. 7, Q11014 (2006)

    Article  ADS  Google Scholar 

  23. Frey, F. A., Weis, D., Borisova, A. Y. & Xu, G. Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: new perspectives from ODP Leg 120 Sites. J. Petrol. 43, 1207–1239 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Peng, Z. X., Mahoney, J. J., Hooper, P. R., Harris, C. & Beane, J. E. A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochim. Cosmochim. Acta 58, 267–288 (1994)

    Article  ADS  CAS  Google Scholar 

  25. Lightfoot, P. C., Hawkesworth, C. J., Devey, C. W., Rogers, N. W. & van Calsteren, P. W. C. Source and differentiation of Deccan Trap Lavas: implications of geochemical and mineral chemical variations. J. Petrol. 31, 1165–1200 (1990)

    Article  ADS  CAS  Google Scholar 

  26. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982)

    Article  ADS  CAS  Google Scholar 

  27. Brandenburg, J. P., Hauri, E. H., van Keken, P. E. & Ballentine, C. J. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet. Sci. Lett. 276, 1–13 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010)

    Article  ADS  CAS  Google Scholar 

  29. Burke, K. Plate tectonics, the Wilson Cycle, and mantle plumes: geodynamics from the top. Annu. Rev. Earth Planet. Sci. 39, 1–29 (2011)

    Article  ADS  CAS  Google Scholar 

  30. Hart, S. R. A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309, 753–757 (1984)

    Article  ADS  CAS  Google Scholar 

  31. Larsen, L. M. & Pedersen, A. K. Petrology of the Paleocene picrites and flood basalts on Disko and Nuussuaq, West Greenland. J. Petrol. 50, 1667–1711 (2009)

    Article  ADS  CAS  Google Scholar 

  32. Operto, S. & Charvis, P. Deep structure of the southern Kerguelen Plateau (southern Indian Ocean) from ocean bottom seismometer wide-angle seismic data. J. Geophys. Res. 101, 25077–25103 (1996)

    Article  ADS  Google Scholar 

  33. Nicolaysen, K. et al. Provenance of Proterozoic garnet-biotite gneiss recovered from Elan Bank, Kerguelen Plateau, southern Indian Ocean. Geology 29, 235–238 (2001)

    Article  ADS  CAS  Google Scholar 

  34. Ingle, S., Weis, D., Doucet, S. & Mattielli, N. Hf isotope constraints on mantle sources and shallow-level contaminants during Kerguelen hotspot activity since 120 Ma. Geochem. Geophys. Geosyst. 4, (2003)

  35. Mahoney, J. et al. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Kerguelen Plateau: early volcanism of the Kerguelen hotspots. Chem. Geol. 120, 315–345 (1995)

    Article  ADS  CAS  Google Scholar 

  36. Ingle, S., Weis, D., Scoates, J. S. & Frey, F. A. Relationship between the early Kerguelen plume and continental flood basalts of the paleo-Eastern Gondwanan margins. Earth Planet. Sci. Lett. 197, 35–50 (2002)

    Article  ADS  CAS  Google Scholar 

  37. Storey, M. et al. Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau. Proc. ODP Sci. Res. 120, 33–53 (1992)

    ADS  CAS  Google Scholar 

  38. Lightfoot, P. & Hawkesworth, C. Origin of Deccan Trap lavas: evidence from combined trace element and Sr-, Nd- and Pb-isotope studies. Earth Planet. Sci. Lett. 91, 89–104 (1988)

    Article  ADS  CAS  Google Scholar 

  39. Peng, Z. X. & Mahoney, J. J. Drillhole lavas from the northwestern Deccan Traps, and the evolution of R union hotspot mantle. Earth Planet. Sci. Lett. 134, 169–185 (1995)

    Article  ADS  CAS  Google Scholar 

  40. Fedorenko, V. A. et al. Petrogenesis of the flood-basalt sequence at Noril’sk, North Central Siberia. Int. Geol. Rev. 38, 99–135 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Day, S. Hart, N. Shimizu, S. Shirey, J. Mahoney and M. Kurz for discussions and B. Hanan and G. Fitton for their detailed review comments. M.J. acknowledges Boston University start-up funds and the Ocean Sciences Section of the National Science Foundation that supported this work.

Author information

Authors and Affiliations

Authors

Contributions

M.J. and R.C. contributed equally to the manuscript.

Corresponding author

Correspondence to Matthew G. Jackson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains a Supplementary Discussion, additional references and Supplementary Figures 1-2 with legends. (PDF 301 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, M., Carlson, R. An ancient recipe for flood-basalt genesis. Nature 476, 316–319 (2011). https://doi.org/10.1038/nature10326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10326

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing