Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans

Abstract

Dietary restriction is a robust means of extending adult lifespan and postponing age-related disease in many species, including yeast, nematode worms, flies and rodents1,2. Studies of the genetic requirements for lifespan extension by dietary restriction in the nematode Caenorhabditis elegans have implicated a number of key molecules in this process3,4,5, including the nutrient-sensing target of rapamycin (TOR) pathway6 and the Foxa transcription factor PHA-4 (ref. 7). However, little is known about the metabolic signals that coordinate the organismal response to dietary restriction and maintain homeostasis when nutrients are limited. The endocannabinoid system is an excellent candidate for such a role given its involvement in regulating nutrient intake and energy balance8. Despite this, a direct role for endocannabinoid signalling in dietary restriction or lifespan determination has yet to be demonstrated, in part due to the apparent absence of endocannabinoid signalling pathways in model organisms that are amenable to lifespan analysis9. N-acylethanolamines (NAEs) are lipid-derived signalling molecules, which include the mammalian endocannabinoid arachidonoyl ethanolamide. Here we identify NAEs in C. elegans, show that NAE abundance is reduced under dietary restriction and that NAE deficiency is sufficient to extend lifespan through a dietary restriction mechanism requiring PHA-4. Conversely, dietary supplementation with the nematode NAE eicosapentaenoyl ethanolamide not only inhibits dietary-restriction-induced lifespan extension in wild-type worms, but also suppresses lifespan extension in a TOR pathway mutant. This demonstrates a role for NAE signalling in ageing and indicates that NAEs represent a signal that coordinates nutrient status with metabolic changes that ultimately determine lifespan.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NAE levels in C. elegans are modulated by FAAH activity.
Figure 2: NAEs affect reproductive growth and dauer formation.
Figure 3: Reduced NAE levels are associated with dietary restriction and are sufficient to confer lifespan extension.
Figure 4: EPEA suppresses the effects of dietary restriction on lifespan.

Similar content being viewed by others

References

  1. Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754 (2008)

    Article  CAS  Google Scholar 

  2. Bishop, N. A. & Guarente, L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Rev. Genet. 8, 835–844 (2007)

    Article  CAS  Google Scholar 

  3. Honjoh, S., Yamamoto, T., Uno, M. & Nishida, E. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans . Nature 457, 726–730 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced longevity in C. elegans . Nature 447, 545–549 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Carrano, A. C., Liu, Z., Dillin, A. & Hunter, T. A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460, 396–399 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453–465 (2010)

    Article  CAS  Google Scholar 

  7. Panowski, S. H., Wolff, S., Aguilaniu, H., Durieux, J. & Dillin, A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans . Nature 447, 550–555 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Di Marzo, V. & Matias, I. Endocannabinoid control of food intake and energy balance. Nature Neurosci. 8, 585–589 (2005)

    Article  CAS  Google Scholar 

  9. McPartland, J. M. & Glass, M. Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates. Gene 312, 297–303 (2003)

    Article  CAS  Google Scholar 

  10. Hardison, S., Weintraub, S. T. & Giuffrida, A. Quantification of endocannabinoids in rat biological samples by GC/MS: technical and theoretical considerations. Prostaglandins Other Lipid Mediat. 81, 106–112 (2006)

    Article  CAS  Google Scholar 

  11. Lehtonen, M., Reisner, K., Auriola, S., Wong, G. & Callaway, J. C. Mass-spectrometric identification of anandamide and 2-arachidonoylglycerol in nematodes. Chem. Biodivers. 5, 2431–2441 (2008)

    Article  CAS  Google Scholar 

  12. Di Marzo, V., Bifulco, M. & De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nature Rev. Drug Discov. 3, 771–784 (2004)

    Article  CAS  Google Scholar 

  13. McPartland, J. M., Matias, I., Di Marzo, V. & Glass, M. Evolutionary origins of the endocannabinoid system. Gene 370, 64–74 (2006)

    Article  CAS  Google Scholar 

  14. Leung, D., Saghatelian, A., Simon, G. M. & Cravatt, B. F. Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 45, 4720–4726 (2006)

    Article  CAS  Google Scholar 

  15. Fielenbach, N. & Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22, 2149–2165 (2008)

    Article  CAS  Google Scholar 

  16. Kirkham, T. C., Williams, C. M., Fezza, F. & Di Marzo, V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br. J. Pharmacol. 136, 550–557 (2002)

    Article  CAS  Google Scholar 

  17. Izzo, A. A. et al. Basal and fasting/refeeding-regulated tissue levels of endogenous PPAR-α ligands in Zucker rats. Obesity 18, 55–62 (2010)

    Article  CAS  Google Scholar 

  18. Chen, D., Thomas, E. L. & Kapahi, P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans . PLoS Genet. 5, e1000486 (2009)

    Article  Google Scholar 

  19. Kaeberlein, T. L. et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487–494 (2006)

    Article  CAS  Google Scholar 

  20. Banni, S. & Di Marzo, V. Effect of dietary fat on endocannabinoids and related mediators: consequences on energy homeostasis, inflammation and mood. Mol. Nutr. Food Res. 54, 82–92 (2010)

    Article  CAS  Google Scholar 

  21. Watts, J. L. & Browse, J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 99, 5854–5859 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Valenti, M. et al. The endocannabinoid system in the brain of Carassius auratus and its possible role in the control of food intake. J. Neurochem. 95, 662–672 (2005)

    Article  CAS  Google Scholar 

  23. Soderstrom, K., Tian, Q., Valenti, M. & Di Marzo, V. Endocannabinoids link feeding state and auditory perception-related gene expression. J. Neurosci. 24, 10013–10021 (2004)

    Article  CAS  Google Scholar 

  24. Breunig, E. et al. The endocannabinoid 2-arachidonoyl-glycerol controls odor sensitivity in larvae of Xenopus laevis . J. Neurosci. 30, 8965–8973 (2010)

    Article  CAS  Google Scholar 

  25. De Petrocellis, L., Melck, D., Bisogno, T., Milone, A. & Di Marzo, V. Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response. Neuroscience 92, 377–387 (1999)

    Article  CAS  Google Scholar 

  26. Elphick, M. R. & Egertova, M. The phylogenetic distribution and evolutionary origins of endocannabinoid signalling. Handb. Exp. Pharmacol. 168, 283–297 (2005)

    Article  CAS  Google Scholar 

  27. Elphick, M. R. BfCBR: a cannabinoid receptor ortholog in the cephalochordate Branchiostoma floridae (Amphioxus). Gene 399, 65–71 (2007)

    Article  CAS  Google Scholar 

  28. Sulston, J., Hodgkin, J. & Wood, W. B. in The Nematode Caenorhabditis elegans 587–606 (Cold Spring Harbor Laboratory, 1988)

    Google Scholar 

  29. Held, J. M. et al. DAF-12-dependent rescue of dauer formation in Caenorhabditis elegans by (25S)-cholestenoic acid. Aging Cell 5, 283–291 (2006)

    Article  CAS  Google Scholar 

  30. Lithgow, G. J., White, T. M., Melov, S. & Johnson, T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl Acad. Sci. USA 92, 7540–7544 (1995)

    Article  ADS  CAS  Google Scholar 

  31. Fabian, T. J. & Johnson, T. E. Production of age-synchronous mass cultures of Caenorhabditis elegans . J. Gerontol. 49, B145–B156 (1994)

    Article  CAS  Google Scholar 

  32. Hobert, O. PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans . Biotechniques 32, 728–730 (2002)

    Article  CAS  Google Scholar 

  33. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989)

    Article  CAS  Google Scholar 

  34. Dupuy, D. et al. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans . Nature Biotechnol. 25, 663–668 (2007)

    Article  CAS  Google Scholar 

  35. Knight, C. G., Patel, M. N., Azevedo, R. B. & Leroi, A. M. A novel mode of ecdysozoan growth in Caenorhabditis elegans . Evol. Dev. 4, 16–27 (2002)

    Article  Google Scholar 

  36. Mair, W., Panowski, S. H., Shaw, R. J. & Dillin, A. Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans . PLoS ONE 4, e4535 (2009)

    Article  ADS  Google Scholar 

  37. Sultana, T. & Johnson, M. E. Sample preparation and gas chromatography of primary fatty acid amides. J. Chromatogr. A 1101, 278–285 (2006)

    Article  CAS  Google Scholar 

  38. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  ADS  CAS  Google Scholar 

  39. Timmons, L., Tabara, H., Mello, C. C. & Fire, A. Z. Inducible systemic RNA silencing in Caenorhabditis elegans . Mol. Biol. Cell 14, 2972–2983 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). We would like to thank N. J. Harrison, A. Olsen and P. Kapahi. M.L. was supported by NIH training grant T32 AG000266 and NIH grant R01 AG029631. GC-MS analysis was made possible through the Mass Spectrometry and Imaging Technologies Core supported by NIH grant PL1-AG032118. This work was supported by a Larry L. Hillblom Foundation grant and NIH grants to G.J.L. (UL1 DE019608, supporting the Interdisciplinary Research Consortium on Geroscience and R01 AG029631) and by NIH grants R21 AG030192 and R01 AG036992 to M.S.G.

Author information

Authors and Affiliations

Authors

Contributions

M.L., J.M.H., B.W.G., G.J.L. and M.S.G. conceived of and planned experiments. M.L., M.C.V., I.M.K., J.B.G. and M.S.G. performed experiments. M.L. and M.S.G. wrote the manuscript.

Corresponding author

Correspondence to Matthew S. Gill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-6 and Supplementary Figures 1- 17 with legends. (PDF 5148 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucanic, M., Held, J., Vantipalli, M. et al. N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 473, 226–229 (2011). https://doi.org/10.1038/nature10007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10007

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing