Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ligand exchanges and selective catalytic hydrogenation in molecular single crystals

Abstract

Chemical reactions inside single crystals are likely to be highly selective, but examples of single crystal to single crystal (SC–SC) transformations are uncommon, because crystallinity is difficult to retain following the rearrangement of atoms in the solid state1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19. The most widely studied SC–SC transformations involve solvent exchange reactions in porous coordination polymers or metal–organic frameworks, which take advantage of the robust polymeric networks of the hosts2,8,9,10,11. Examples of reactions occurring within molecular organic crystals generally involve photo-induced reactions, such as the coupling of alkenes or alkynes within the crystal1,2,12,13,14,15. For nonporous molecular inorganic or organometallic crystals, single-crystal transformations involving the formation or cleavage of metal–ligand bonds are rare17,18,19,20,21; known examples usually involve ligand loss from the single crystal and reversible religation, a process sometimes accompanied by decay of the single crystal to a microcrystalline powder20,21. Here we report a series of SC–SC transformations that involve the interchange of multiple small gaseous ligands (N2, CO, NH3, C2H4, H2 and O2) at an iridium centre in molecular single crystals of a pincer Ir(I) complex. The single crystal remains intact during these ligand-exchange reactions, which occur within the crystal and do not require prior ligand extrusion. We reveal a selective catalytic transformation within a nonporous molecular crystal: pincer iridium single crystals ligated with nitrogen, ethylene or hydrogen show selective hydrogenation of ethylene relative to propylene (25:1) when surface sites are passified by CO.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-crystal structures of [Ir]-N2, [Ir]-CO, [Ir]-NH3, [Ir]-C2H4, [Ir]-(H)2(H2), and [Ir]-O2.
Figure 2: Unit-cell and stacking diagrams of single-crystal [Ir]-N2.
Figure 3: Superposition of crystal structures.

Similar content being viewed by others

References

  1. Foxman, B. M. & Ward, M. D. Molecules in the Solid State 534–548 (MRS, 2007)

    Google Scholar 

  2. Vittal, J. J. Supramolecular structural transformations involving coordination polymers in the solid state. Coord. Chem. Rev. 251, 1781–1795 (2007)

    Article  CAS  Google Scholar 

  3. Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Cotton, F. A. et al. Crystal-to-crystal oxidative deprotonation of a di(μ-hydroxo) to a di(μ-oxo) dimer of dimolybdenum units. Inorg. Chem. 46, 3245–3250 (2007)

    Article  CAS  Google Scholar 

  5. Hu, C.-H. & Englert, U. Space filling versus symmetry: two consecutive crystal-to-crystal phase transitions in a 2D network. Angew. Chem. Intl Edn Engl. 45, 3457–3459 (2006)

    Article  CAS  Google Scholar 

  6. Xue, D., Zhang, W., Chen, X. & Wang, H. Single-crystal-to-single-crystal transformation involving release of ridging water molecules and conversion of chain helicity in a chiral three-dimensional metal-organic framework. Chem. Commun. 1551–1553 (2008)

  7. Iordanidis, L. & Kanatzidis, M. G. Redox-induced “zipper” action in Rb2Bi4Se7 and Cs2Bi4Se7: coupling of slabs to a three-dimensional framework through single-crystal to single-crystal conversion. Angew. Chem. Intl Edn Engl. 39, 1928–1930 (2000)

    Article  CAS  Google Scholar 

  8. Kawano, M. & Fujita, M. Direct observation of crystalline-state guest exchange in coordination networks. Coord. Chem. Rev. 251, 2592–2605 (2007)

    Article  CAS  Google Scholar 

  9. Ghosh, S. K., Kaneko, W., Kiriya, D., Ohba, M. & Kitagawa, S. A bistable porous coordination polymer with a bond-switching mechanism showing reversible structural and functional transformations. Angew. Chem. Intl Edn Engl. 47, 8843–8847 (2008)

    Article  CAS  Google Scholar 

  10. Haneda, T., Kawano, M., Kawamichi, T. & Fujita, M. Direct observation of the labile imine formation through single-crystal-to-single-crystal reactions in the pores of a porous coordination network. J. Am. Chem. Soc. 130, 1578–1579 (2008)

    Article  CAS  Google Scholar 

  11. Ghosh, S. K., Zhang, J. & Kitagawa, S. Reversible topochemical transformation of a soft crystal of a coordination polymer. Angew. Chem. Intl Edn Engl. 46, 7965–7968 (2007)

    Article  CAS  Google Scholar 

  12. Garcia-Garibay, M. A. Molecular crystals on the move: from single-crystal-to-single-crystal photoreactions to molecular machinery. Angew. Chem. Intl Edn Engl. 46, 8945–8947 (2007)

    Article  CAS  Google Scholar 

  13. Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Bucar, D. & MacGillivray, L. R. Preparation and reactivity of nanocrystalline cocrystals formed via sonocrystallization. J. Am. Chem. Soc. 129, 32–33 (2007)

    Article  CAS  Google Scholar 

  15. Warren, M. R. et al. Reversible 100% linkage isomerization in a single-crystal to single-crystal transformation: photocrystallographic identification of the metastable [Ni(dppe)(η1-ONO)Cl] isomer. Angew. Chem. Intl Edn Engl. 48, 5711–5714 (2009)

    Article  CAS  Google Scholar 

  16. Li, B. et al. Solvent-induced transformation of single crystals of a spin-crossover (SCO) compound to single crystals with two distinct SCO centers. J. Am. Chem. Soc. 132, 1558–1566 (2010)

    Article  CAS  Google Scholar 

  17. Das, S. K. & Supriya, S. Reversible single crystal to single crystal transformation through Fe-O(H)Me/Fe-OH2 bond formation/bond breaking in a gas-solid reaction at an ambient condition. J. Am. Chem. Soc. 129, 3464–3465 (2007)

    Article  Google Scholar 

  18. Libri, S. et al. Ligand substitution within nonporous crystals of a coordination polymer: elimination from and insertion into Ag–O bonds by alcohol molecules in a solid–vapor reaction. Angew. Chem. Intl Edn Engl. 47, 1693–1697 (2008)

    Article  CAS  Google Scholar 

  19. Bezzu, C. G., Helliwell, M., Warren, J. E., Allan, D. R. & McKeown, N. B. Heme-like coordination chemistry within nanoporous molecular crystals. Science 327, 1627–1630 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Albrecht, M., Lutz, M., Spek, A. L. & van Koten, G. Organoplatinum crystals for gas-triggered switches. Nature 406, 970–974 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Lennartson, A., Håkansson, M. & Jagner, S. Cis- and trans-bis(benzoylacetonato)pyridinecopper(II): co-crystallisation of isomers and reversible pyridine loss with retention of crystallinity. N. J. Chem. 31, 344–347 (2007)

    Article  CAS  Google Scholar 

  22. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Science 312, 257–261 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Huang, Z. et al. Highly active and recyclable heterogeneous iridium pincer catalysts for transfer dehydrogenation of alkanes. Adv. Synth. Catal. 351, 188–206 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Ghosh, R., Kanzelberger, M., Emge, T. J., Hall, G. S. & Goldman, A. S. Dinitrogen complexes of pincer-ligated iridium. Organometallics 25, 5668–5671 (2006)

    Article  CAS  Google Scholar 

  25. Göttker-Schnetmann, I., White, P. S. & Brookhart, M. Synthesis and properties of iridium bis(phosphinite) pincer complexes (p-XPCP)IrH2, (p-XPCP)Ir(CO), (p-XPCP)Ir(H)(aryl), and {(p-XPCP)Ir}2{μ-N2} and their relevance in alkane transfer dehydrogenation. Organometallics 23, 1766–1776 (2004)

    Article  Google Scholar 

  26. Morales-Morales, D. et al. Selective dehydrogenation of alcohols and diols catalyzed by a dihydrido iridium PCP pincer complex. Can. J. Chem. 79, 823–829 (2001)

    Article  CAS  Google Scholar 

  27. Kanzelberger, M. et al. Distinct thermodynamics for the formation and cleavage of N-H bonds in aniline and ammonia. Directly-observed reductive elimination of ammonia from an isolated amido hydride complex. J. Am. Chem. Soc. 125, 13644–13645 (2003)

    Article  CAS  Google Scholar 

  28. Hebden, T. J. et al. Dihydrogen/dihydride or tetrahydride? An experimental and computational investigation of pincer iridium polyhydrides. Inorg. Chem. 49, 1733–1742 (2010)

    Article  CAS  Google Scholar 

  29. Williams, D. B., Kaminsky, W., Mayer, J. M. & Goldberg, K. I. Reactions of iridium hydride pincer complexes with dioxygen: new dioxygen complexes and reversible O2 binding. Chem. Commun. 4195–4197 (2008)

  30. Spek, A. L. Single-crystal structure validation with the program PLATON . J. Appl. Cryst. 36, 7–13 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Science Foundation under the auspices of the Centre for Enabling New Technologies through Catalysis (CENTC).

Author information

Authors and Affiliations

Authors

Contributions

M.B. directed the project. Z.H. carried out all complex syntheses, crystallizations and reactions. P.S.W. carried out single crystal X-ray diffraction experiments and crystal structure determinations. M.B. and Z.H. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Maurice Brookhart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Supplementary crystallographic data for this paper has been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CCDC 728556 to 728561, 729323, 729324 and 759994 to 759996. These data can be obtained free of charge from http://www.ccdc.cam.ac.uk/data_request/cif.

Supplementary information

Supplementary Information

This file contains Supplementary Experiments, Methods and Synthesis, Supplementary Tables 1- 6, Supplementary Figures 1-7 with legends and References. (PDF 537 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., White, P. & Brookhart, M. Ligand exchanges and selective catalytic hydrogenation in molecular single crystals. Nature 465, 598–601 (2010). https://doi.org/10.1038/nature09085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09085

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing