Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis of oligomerization in the stalk region of dynamin-like MxA

Abstract

The interferon-inducible dynamin-like myxovirus resistance protein 1 (MxA; also called MX1) GTPase is a key mediator of cell-autonomous innate immunity against pathogens such as influenza viruses1. MxA partially localizes to COPI-positive membranes of the smooth endoplasmic reticulum–Golgi intermediate compartment2. At the point of infection, it redistributes to sites of viral replication and promotes missorting of essential viral constituents3,4. It has been proposed that the middle domain and the GTPase effector domain of dynamin-like GTPases constitute a stalk that mediates oligomerization and transmits conformational changes from the G domain to the target structure5,6,7; however, the molecular architecture of this stalk has remained elusive. Here we report the crystal structure of the stalk of human MxA, which folds into a four-helical bundle. This structure tightly oligomerizes in the crystal in a criss-cross pattern involving three distinct interfaces and one loop. Mutations in each of these interaction sites interfere with native assembly, oligomerization, membrane binding and antiviral activity of MxA. On the basis of these results, we propose a structural model for dynamin oligomerization and stimulated GTP hydrolysis that is consistent with previous structural predictions and has functional implications for all members of the dynamin family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and oligomerization of the MxA stalk.
Figure 2: Biochemical analysis of the oligomerization interfaces.
Figure 3: Antiviral activity of MxA variants.
Figure 4: Oligomeric models of dynamin-like proteins.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates of the MxA stalk have been deposited in the Protein Data Bank with accession number 3LJB.

References

  1. Haller, O., Stertz, S. & Kochs, G. The Mx GTPase family of interferon-induced antiviral proteins. Microbes Infect. 9, 1636–1643 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Stertz, S. et al. Interferon-induced, antiviral human MxA protein localizes to a distinct subcompartment of the smooth endoplasmic reticulum. J. Interferon Cytokine Res. 26, 650–660 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Kochs, G. & Haller, O. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proc. Natl Acad. Sci. USA 96, 2082–2086 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reichelt, M. et al. Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes. Traffic 5, 772–784 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Mears, J. A., Ray, P. & Hinshaw, J. E. A corkscrew model for dynamin constriction. Structure 15, 1190–1202 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klockow, B. et al. The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO J. 21, 240–250 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, Y. J. et al. The stalk region of dynamin drives the constriction of dynamin tubes. Nature Struct. Mol. Biol. 11, 574–575 (2004)

    Article  CAS  Google Scholar 

  8. Reubold, T. F. et al. Crystal structure of the GTPase domain of rat dynamin 1. Proc. Natl Acad. Sci. USA 102, 13093–13098 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flohr, F. et al. The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures. FEBS Lett. 463, 24–28 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Arnheiter, H. & Haller, O. Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. EMBO J. 7, 1315–1320 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwemmle, M. et al. Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein. J. Biol. Chem. 270, 13518–13523 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. Zurcher, T., Pavlovic, J. & Staeheli, P. Mechanism of human MxA protein action: variants with changed antiviral properties. EMBO J. 11, 1657–1661 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chappie, J. S. et al. An intramolecular signaling element that modulates dynamin function in vitro and in vivo . Mol. Biol. Cell 20, 3561–3571 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prakash, B. et al. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403, 567–571 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Daumke, O. et al. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449, 923–927 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Low, H. H. & Lowe, J. A bacterial dynamin-like protein. Nature 444, 766–769 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ramachandran, R. et al. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J. 26, 559–566 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Ingerman, E. et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170, 1021–1027 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kochs, G. et al. Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. J. Biol. Chem. 277, 14172–14176 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Ponten, A. et al. Dominant-negative mutants of human MxA protein: domains in the carboxy-terminal moiety are important for oligomerization and antiviral activity. J. Virol. 71, 2591–2599 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Accola, M. A. et al. The antiviral dynamin family member, MxA, tubulates lipids and localizes to the smooth endoplasmic reticulum. J. Biol. Chem. 277, 21829–21835 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Kochs, G. et al. Assay and functional analysis of dynamin-like Mx proteins. Methods Enzymol. 404, 632–643 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. Richter, M. F. et al. Interferon-induced MxA protein. GTP binding and GTP hydrolysis properties. J. Biol. Chem. 270, 13512–13517 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. Melen, K. et al. Enzymatic characterization of interferon-induced antiviral GTPases murine Mx1 and human MxA proteins. J. Biol. Chem. 269, 2009–2015 (1994)

    CAS  PubMed  Google Scholar 

  26. Hefti, H. P. et al. Human MxA protein protects mice lacking a functional alpha/beta interferon system against La crosse virus and other lethal viral infections. J. Virol. 73, 6984–6991 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maines, T. R. et al. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J. Virol. 79, 11788–11800 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dittmann, J. et al. Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase. J. Virol. 82, 3624–3631 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghosh, A. et al. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature 440, 101–104 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Van Duyne, G. D. et al. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993)

    Article  CAS  PubMed  Google Scholar 

  32. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  33. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    Article  ADS  CAS  MATH  PubMed  Google Scholar 

  34. Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for phasing with SHELX programs. J. Appl. Cryst. 37, 843–844 (2004)

    Article  CAS  Google Scholar 

  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  36. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997)

    Article  CAS  Google Scholar 

  37. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. Laskowski, R. A. et al. Procheck - a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  39. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  PubMed  Google Scholar 

  40. Kraulis, P. J. Molscript - a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991)

    Article  Google Scholar 

  41. Merritt, E. A. & Murphy, M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994)

    Article  CAS  PubMed  Google Scholar 

  42. Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–W302 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Potterton, L. et al. Developments in the CCP4 molecular-graphics project. Acta Crystallogr. D 60, 2288–2294 (2004)

    Article  PubMed  CAS  Google Scholar 

  44. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997)

    Article  CAS  PubMed  Google Scholar 

  45. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. DeLano, W. L. The PyMol Molecular Graphics System 〈http://www.pymol.org〉 (DeLano Scientific, 2002)

  47. Steinkellner, G. et al. VASCo: computation and visualization of annotated protein surface contacts. BMC Bioinform. 10, 32 (2009)

    Article  CAS  Google Scholar 

  48. Behlke, J., Ristau, O. & Schonfeld, H. J. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. Biochemistry 36, 5149–5156 (1997)

    Article  CAS  PubMed  Google Scholar 

  49. Praefcke, G. J. et al. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis. J. Mol. Biol. 344, 257–269 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by a grant of the Deutsche Forschungsgemeinschaft (SFB 740-From Molecules to Modules) and by a Career Development Fellowship of ‘The International Human Frontier Science Program Organization’ to O.D., and by the German-Israeli-Research foundation (GIF-841/04) to G.K. and O.H. We are grateful to J. Hinshaw and J. Mears for providing the EM maps and model fittings of oligomerized dynamin. We would also like to acknowledge help and support of O. Ristau and K. Schilling/Nanolytics (analytical ultracentrifugation), M. Dahte and H. Nikolenko (fluorescence measurements), A. Herrmann, T. Korte and P. Müller (stopped-flow analysis), G. Dittmar (mass spectrometry analysis), S. Werner and S. Gruber (technical assistance) and the BESSY staff at BL14.1 (data collection). This work was conducted by A.v.M. in partial fulfilment for a PhD degree from the Faculty of Biology at the University of Freiburg, Germany.

Author information

Authors and Affiliations

Authors

Contributions

S.G. solved the structure and carried out the biochemical characterization of MxA mutants. A.v.M. carried out all antiviral and cellular assays. S.P. assisted S.G. in cloning and purification. J.B. performed the analytical ultracentrifugation analysis. S.G., A.v.M., O.H., G.K. and O.D. planned the experimental design and wrote the manuscript.

Corresponding author

Correspondence to Oliver Daumke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1-12 with legends, Supplementary Tables 1-2 and References. (PDF 3284 kb)

Supplementary Data

This file contains the Pdb coordinates (dyn-oligomer.pdb) of four dynamin molecules in our proposed oligomer. The stalks of MxA were aligned as described in Fig. 4 and Supp. Fig. 12. The G-domains are from rat Dynamin1 (pdb 2AKA, ref. 8) with the position of the GDP molecule derived from Dictyostelium Dynamin (pdb 1JWY, ref. 61). The coordinates of the PH domain are from pdb 2DYN (ref. 62). (TXT 1400 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., von der Malsburg, A., Paeschke, S. et al. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465, 502–506 (2010). https://doi.org/10.1038/nature08972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08972

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing