Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium

This article has been updated

Abstract

Nitrogen (N2)-fixing marine cyanobacteria are an important source of fixed inorganic nitrogen that supports oceanic primary productivity and carbon dioxide removal from the atmosphere1. A globally distributed2,3, periodically abundant4 N2-fixing5 marine cyanobacterium, UCYN-A, was recently found to lack the oxygen-producing photosystem II complex6 of the photosynthetic apparatus, indicating a novel metabolism, but remains uncultivated. Here we show, from metabolic reconstructions inferred from the assembly of the complete UCYN-A genome using massively parallel pyrosequencing of paired-end reads, that UCYN-A has a photofermentative metabolism and is dependent on other organisms for essential compounds. We found that UCYN-A lacks a number of major metabolic pathways including the tricarboxylic acid cycle, but retains sufficient electron transport capacity to generate energy and reducing power from light. Unexpectedly, UCYN-A has a reduced genome (1.44 megabases) that is structurally similar to many chloroplasts and some bacteria, in that it contains inverted repeats of ribosomal RNA operons7. The lack of biosynthetic pathways for several amino acids and purines suggests that this organism depends on other organisms, either in close association or in symbiosis, for critical nutrients. However, size fractionation experiments using natural populations have so far not provided evidence of a symbiotic association with another microorganism. The UCYN-A cyanobacterium is a paradox in evolution and adaptation to the marine environment, and is an example of the tight metabolic coupling between microorganisms in oligotrophic oceanic microbial communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circular map of UCYN-A chromosome compared with Cyanothece sp. ATCC 51142.
Figure 2: Overview of the metabolism of UCYN-A.
Figure 3: Putative electron flows in UCYN-A.
Figure 4: UCYN-A nifH gene copies recovered by size fraction.

Similar content being viewed by others

Accession codes

Data deposits

The UCYN-A genome reported here has been deposited at GenBank under accession code CP001842.

Change history

  • 04 March 2010

    'Trichloroacetic’ was replaced by ‘tricarboxylic’ in two instances on 4 March 2010.

References

  1. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea how can it occur. Biogeochemistry 13, 87–115 (1991)

    Article  Google Scholar 

  2. Zehr, J. P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Falcón, L. I., Cipriano, F., Chistoserdov, A. Y. & Carpenter, E. J. Diversity of diazotrophic unicellular cyanobacteria in the tropical North Atlantic Ocean. Appl. Environ. Microbiol. 68, 5760–5764 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M. & Zehr, J. P. Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol. 71, 5362–5370 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zehr, J. P. et al. Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre. Limnol. Oceanogr. 52, 169–183 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Zehr, J. P. et al. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322, 1110–1112 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Palmer, J. D. Chloroplast DNA exists in two orientations. Nature 301, 92–93 (1983)

    Article  ADS  CAS  Google Scholar 

  8. Goebel, N. L., Edwards, C. A., Carter, B. J., Achilles, K. M. & Zehr, J. P. Growth and C content of three different-sized diazotrophic cyanobacteria observed in the subtropical North Pacific. J. Phycol. 44, 1212–1220 (2008)

    Article  PubMed  Google Scholar 

  9. Miller, J. R. et al. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24, 2818–2824 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaneko, T., Matsubayashi, T., Sugita, M. & Sugiura, M. Physical and gene maps of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome. Plant Mol. Biol. 31, 193–201 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. Kotani, H. et al. Assignment of 82 known genes and gene clusters on the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. DNA Res. 2, 133–142 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. Turmel, M., Gagnon, M. C., O’Kelly, C. J., Otis, C. & Lemieux, C. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol. Biol. Evol. 26, 631–648 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Helm, R. A., Lee, A. G., Christman, H. D. & Maloy, S. Genomic rearrangements at rrn operons in Salmonella . Genetics 165, 951–959 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Turmel, M., Otis, C. & Lemieux, C. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc. Natl Acad. Sci. USA 96, 10248–10253 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith, A. J., London, J. & Stanier, R. Y. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J. Bacteriol. 94, 972–983 (1967)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Thauer, R. K. Microbiology: a fifth pathway of C fixation. Science 318, 1732–1733 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Neuhaus, H. E. & Emes, M. J. Nonphotosynthetic metabolism in plastids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 111–140 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Winkler, M., Hemschemeier, A., Gotor, C., Melis, A. & Happe, T. [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int. J. Hydrogen Energy 27, 1431–1439 (2002)

    Article  CAS  Google Scholar 

  19. Belkin, S. & Padan, E. Hydrogen metabolism in the facultative anoxygenic cyanobacteria (blue-green algae) Oscillatoria limnetica and Aphanothece halophytica . Arch. Microbiol. 116, 109–111 (1978)

    Article  CAS  PubMed  Google Scholar 

  20. Wünschiers, R., Senger, H. & Schulz, R. Electron pathways involved in H2-metabolism in the green alga Scenedesmus obliquus . Biochim. Biophys. Acta 1503, 271–278 (2001)

    Article  PubMed  Google Scholar 

  21. Misra, H. S., Khairnar, N. P. & Mahajan, S. K. An alternate photosynthetic electron donor system for PSI supports light dependent nitrogen fixation in a non-heterocystous cyanobacterium, Plectonema boryanum . J. Plant Physiol. 160, 33–39 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Seshadri, R., Kravitz, S. A., Smarr, L., Gilna, P. & Frazier, M. CAMERA: a community resource for metagenomics. PLoS Biol. 5, e75 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kimura, M. DNA and the neutral theory. Phil. Trans. R. Soc. Lond. B 312, 343–354 (1986)

    Article  ADS  CAS  Google Scholar 

  24. Urbach, E. & Chisholm, S. W. Genetic diversity in Prochlorococcus populations flow cytometrically sorted from the Sargasso Sea and Gulf Stream. Limnol. Oceanogr. 43, 1615–1630 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zehr, J. P., Bench, S. R., Mondragon, E. A., McCarren, J. & DeLong, E. F. Low genomic diversity in tropical oceanic N-2-fixing cyanobacteria. Proc. Natl Acad. Sci. USA 104, 17807–17812 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pérez-Brocal, V. et al. A small microbial genome: the end of a long symbiotic relationship? Science 314, 312–313 (2006)

    Article  ADS  PubMed  Google Scholar 

  28. Janson, S. in Cyanobacteria in Symbiosis (eds Rai, A. N., Bergman, B. & Rasmussen, U.) 1–10 (Kluwer, 2002)

    Google Scholar 

  29. Biegala, I. C. & Raimbault, P. High abundance of diazotrophic picocyanobacteria (3 µm) in a Southwest Pacific coral lagoon. Aquat. Microb. Ecol. 51, 45–53 (2008)

    Article  Google Scholar 

  30. Markowitz, V. M. et al. The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res. 36, D528–D533 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gordon and Betty Moore Foundation, the US National Science Foundation (NSF) and the NSF Center for Microbial Oceanography: Research and Education. 454 Life Sciences, a Roche Company, provided sequencing services. Flow cytometry was done by B. Carter in the Microbial Environmental Genomics Applications: Modelling, Experimentation, and Remote Sensing (MEGAMER) facility of the University of California, Santa Cruz. We thank I. Hewson for sample collection and preliminary metagenomic analysis.

Author Contributions J.P.Z. and J.P.A. designed the study. H.J.T. devised the genome-closing strategy, annotated the genome, performed all metabolic reconstructions, performed the metagenomic and metatranscriptomic analysis and wrote the manuscript with J.P.Z. S.R.B. prepared DNA for sequencing and assisted in genome assembly and closing. F.N. prepared paired-end libraries and sequenced the DNA. K.A.T. performed all PCR reactions relating to genome closure and confirmation of two genome orientations. B.A.D. performed the initial genome assembly. R.A.F. performed the size fractionation experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Zehr.

Ethics declarations

Competing interests

Brian A. Desany, Faheem Niazi, and Jason P. Affourtit are employees of 454 Life Sciences, A Roche Company, which provided sequencing services and software for this paper.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Tables S1-S4, Supplementary Figures S1-S5 with Legends, Supplementary Notes and Supplementary References. (PDF 1215 kb)

Supplementary Data 1

This file contains the results of the comparison of the UCYN-A biosynthetic capacity for amino acids and purines to that of Cyanothece sp. ATCC51142. (XLS 49 kb)

Supplementary Data 2

This file contains the detail supporting the metagenomic and metatranscriptomic statistics in Table 1 of the main text. (XLS 192 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripp, H., Bench, S., Turk, K. et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464, 90–94 (2010). https://doi.org/10.1038/nature08786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08786

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing