Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Designing materials to direct stem-cell fate

Abstract

Proper tissue function and regeneration rely on robust spatial and temporal control of biophysical and biochemical microenvironmental cues through mechanisms that remain poorly understood. Biomaterials are rapidly being developed to display and deliver stem-cell-regulatory signals in a precise and near-physiological fashion, and serve as powerful artificial microenvironments in which to study and instruct stem-cell fate both in culture and in vivo. Further synergism of cell biological and biomaterials technologies promises to have a profound impact on stem-cell biology and provide insights that will advance stem-cell-based clinical approaches to tissue regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Origins, promises and challenges of stem cells.
Figure 2: Biochemical and biophysical properties of stem-cell niches.
Figure 3: Engineering 2D artificial stem-cell niches.
Figure 4: Engineering 'pseudo-3D' models of stem-cell niches.
Figure 5: Engineering 3D in vitro models of stem-cell niches.
Figure 6: Quantitative investigations of in vitro stem-cell fates using live-cell microscopy.

Similar content being viewed by others

References

  1. Blau, H. M., Sacco, A. & Gilbert, P. M. in Essentials of Stem Cell Biology 2nd edn (eds Lanza, R. et al.) 249–257 (Academic, in the press).

  2. Blau, H. M., Sacco, A. & Gilbert, P. M. in Encyclopedia of Stem Cell Research (eds Svendsen, C. & Ebert, A.) (SAGE, in the press).

  3. Daley, G. Q. & Scadden, D. T. Prospects for stem cell-based therapy. Cell 132, 544–548 (2008).

    CAS  PubMed  Google Scholar 

  4. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23, 47–55 (2005).

    CAS  Google Scholar 

  5. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    ADS  CAS  PubMed  Google Scholar 

  6. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guilak, F. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chai, C. & Leong, K. W. Biomaterials approach to expand and direct differentiation of stem cells. Mol. Ther. 15, 467–480 (2007).

    CAS  PubMed  Google Scholar 

  10. Saha, K., Pollock, J. F., Schaffer, D. V. & Healy, K. E. Designing synthetic materials to control stem cell phenotype. Curr. Opin. Chem. Biol. 11, 381–387 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hwang, N. S., Varghese, S. & Elisseeff, J. Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60, 199–214 (2008).

    CAS  PubMed  Google Scholar 

  12. Dawson, E., Mapili, G., Erickson, K., Taqvi, S. & Roy, K. Biomaterials for stem cell differentiation. Adv. Drug Deliv. Rev. 60, 215–228 (2008).

    CAS  PubMed  Google Scholar 

  13. Dellatore, S. M., Garcia, A. S. & Miller, W. M. Mimicking stem cell niches to increase stem cell expansion. Curr. Opin. Biotechnol. 19, 534–540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Little, L., Healy, K. E. & Schaffer, D. V. Engineering biomaterials for synthetic neural stem cell microenvironments. Chem. Rev. 108, 1787–1796 (2008).

    CAS  PubMed  Google Scholar 

  15. Burdick, J. A. & Vunjak-Novakovic, G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng. A 15, 205–219 (2009).

    CAS  Google Scholar 

  16. Flaim, C. J., Chien, S. & Bhatia, S. N. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2, 119–125 (2005).

    CAS  PubMed  Google Scholar 

  17. Soen, Y., Mori, A., Palmer, T. D. & Brown, P. O. Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol. Syst. Biol. 2, 37 (2006). This paper presents an approach to probing quantitatively the effects of molecular signals and signal combinations on stem-cell fate decisions.

  18. Derda, R. et al. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem. Biol. 2, 347–355 (2007).

    CAS  PubMed  Google Scholar 

  19. LaBarge, M. A. et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr. Biol. 1, 70–79 (2009).

    CAS  Google Scholar 

  20. Irvine, D. J., Hue, K. A., Mayes, A. M. & Griffith, L. G. Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys. J. 82, 120–132 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nur-E-Kamal, A. et al. Covalently attached FGF-2 to three-dimensional polyamide nanofibrillar surfaces demonstrates enhanced biological stability and activity. Mol. Cell. Biochem. 309, 157–166 (2008).

    CAS  PubMed  Google Scholar 

  22. Fan, V. H. et al. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells 25, 1241–1251 (2007).

    CAS  PubMed  Google Scholar 

  23. Alberti, K. et al. Functional immobilization of signaling proteins enables control of stem cell fate. Nature Methods 5, 645–650 (2008). This paper demonstrates the relevance of signalling-protein tethering to the fate of (embryonic) stem cells.

    CAS  PubMed  Google Scholar 

  24. Suzuki, T. et al. Highly efficient ex vivo expansion of human hematopoietic stem cells using Delta1-Fc chimeric protein. Stem Cells 24, 2456–2465 (2006).

    CAS  PubMed  Google Scholar 

  25. Beckstead, B. L., Santosa, D. M. & Giachelli, C. M. Mimicking cell–cell interactions at the biomaterial–cell interface for control of stem cell differentiation. J. Biomed. Mater. Res. A 79, 94–103 (2006).

    PubMed  Google Scholar 

  26. Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnol. 22, 863–866 (2004).

    CAS  Google Scholar 

  27. Webster, C., Silberstein, L., Hays, A. P. & Blau, H. M. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52, 503–513 (1988).

    CAS  PubMed  Google Scholar 

  28. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    ADS  CAS  PubMed  Google Scholar 

  29. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS  PubMed  Google Scholar 

  30. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). This paper demonstrates the important role of matrix stiffness in the fate of (mesenchymal) stem cells.

    CAS  PubMed  Google Scholar 

  31. Saha, K. et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boonen, K. J., Rosaria-Chak, K. Y., Baaijens, F. P., van der Schaft, D. W. & Post, M. J. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am. J. Physiol. Cell Physiol. 296, C1338−C1345 (2009).

  33. Li, Y. J., Chung, E. H., Rodriguez, R. T., Firpo, M. T. & Healy, K. E. Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J. Biomed. Mater. Res. A 79, 1–5 (2006).

    PubMed  Google Scholar 

  34. Folkman, J. & Moscona, A. Role of cell shape in growth control. Nature 273, 345–349 (1978).

    ADS  CAS  PubMed  Google Scholar 

  35. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    CAS  PubMed  Google Scholar 

  36. Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nature Rev. Mol. Cell Biol. 10, 34–43 (2009).

    CAS  Google Scholar 

  37. Chen, C. S., Alonso, J. L., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307, 355–361 (2003).

    CAS  PubMed  Google Scholar 

  38. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004). This paper highlights the role of cell-shape control in regulating the fate of (mesenchymal) stem cells.

    CAS  PubMed  Google Scholar 

  39. Peerani, R. et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 26, 4744–4755 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chin, V. I. et al. Microfabricated platform for studying stem cell fates. Biotechnol. Bioeng. 88, 399–415 (2004).

    CAS  PubMed  Google Scholar 

  41. Mohr, J. C., de Pablo, J. J. & Palecek, S. P. 3-D microwell culture of human embryonic stem cells. Biomaterials 27, 6032–6042 (2006).

    CAS  PubMed  Google Scholar 

  42. Khademhosseini, A. et al. Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials 27, 5968–5977 (2006).

    CAS  PubMed  Google Scholar 

  43. Karp, J. M. et al. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7, 786–794 (2007).

    CAS  PubMed  Google Scholar 

  44. Moeller, H. C., Mian, M. K., Shrivastava, S., Chung, B. G. & Khademhosseini, A. A microwell array system for stem cell culture. Biomaterials 29, 752–763 (2008).

    CAS  PubMed  Google Scholar 

  45. Ungrin, M. D., Joshi, C., Nica, A., Bauwens, C. & Zandstra, P. W. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS ONE 3, e1565 (2008).

  46. Dykstra, B. et al. High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. Proc. Natl Acad. Sci. USA 103, 8185–8190 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cordey, M., Limacher, M., Kobel, S., Taylor, V. & Lutolf, M. P. Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell arrays. Stem Cells 26, 2586–2594 (2008).

    PubMed  Google Scholar 

  48. Lutolf, M. P., Doyonnas, R., Havenstrite, K., Koleckar, K. & Blau, H. M. Perturbation of single hematopoietic stem cell fates in artificial niches. Integr. Biol. 1, 59–69 (2009). This paper presents a combination of in vitro and in vivo methods to deconstruct a stem-cell niche and probe the effects of its individual key components on the fate of single (haematopoietic) stem cells.

    CAS  Google Scholar 

  49. Jia, X. & Kiick, K. L. Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9, 140–156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Albrecht, D. R., Underhill, G. H., Wassermann, T. B., Sah, R. L. & Bhatia, S. N. Probing the role of multicellular organization in three-dimensional microenvironments. Nature Methods 3, 369–375 (2006). This paper presents an interesting approach to the micropatterning of cells in 3D hydrogel microenvironments.

    CAS  PubMed  Google Scholar 

  51. Lutolf, M. P. & Blau, H. M. in Advances in Tissue Engineering (ed. Polak, J.) Ch. 9 (World Scientific, in the press).

  52. Lutolf, M. P. & Blau, H. M. in Mater. Res. Soc. Symp. Proc. Vol. 1140 (eds Prasad Shastri, V., Lendlein, A., Liu, L., Mikos, A. & Mitragotri, S. ) 1140-HH07-07 (Materials Research Society, 2009).

    Google Scholar 

  53. Lutolf, M. P. Artificial ECM: expanding the cell biology toolbox in 3D. Integr. Biol. 1, 235–241 (2009).

    CAS  Google Scholar 

  54. Hennink, W. E. & van Nostrum, C. F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 54, 13–36 (2002).

    CAS  PubMed  Google Scholar 

  55. Kopecek, J. & Yang, J. Y. Hydrogels as smart biomaterials. Polym. Int. 56, 1078–1098 (2007).

    CAS  Google Scholar 

  56. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    ADS  CAS  PubMed  Google Scholar 

  57. Lin, C. C. & Anseth, K. S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26, 631–643 (2009).

    CAS  PubMed  Google Scholar 

  58. Underhill, G. H. & Bhatia, S. N. High-throughput analysis of signals regulating stem cell fate and function. Curr. Opin. Chem. Biol. 11, 357–366 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gidrol, X. et al. 2D and 3D cell microarrays in pharmacology. Curr. Opin. Pharmacol. 9, 664–668 (2009).

    CAS  PubMed  Google Scholar 

  60. Fernandes, T. G., Diogo, M. M., Clark, D. S., Dordick, J. S. & Cabral, J. M. S. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol. 27, 342–349 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, M. Y. et al. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl Acad. Sci. USA 105, 59–63 (2008).

    ADS  CAS  PubMed  Google Scholar 

  62. Jongpaiboonkit, L., King, W. J. & Murphy, W. L. Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays. Tissue Eng. A 15, 343–353 (2009).

    CAS  Google Scholar 

  63. Sudo, R. et al. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23, 2155–2164 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tam, P. P. L. & Loebel, D. A. F. Gene function in mouse embryogenesis: get set for gastrulation. Nature Rev. Genet. 8, 368–381 (2007).

    CAS  PubMed  Google Scholar 

  65. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    ADS  CAS  PubMed  Google Scholar 

  66. Chung, B. G. et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5, 401–406 (2005).

    ADS  CAS  PubMed  Google Scholar 

  67. Choi, N. W. et al. Microfluidic scaffolds for tissue engineering. Nature Mater. 6, 908–915 (2007). This paper is a good example of how microfluidic technology can be used to generate well-controlled protein gradients in 3D cell matrices.

    ADS  CAS  Google Scholar 

  68. Peret, B. J. & Murphy, W. L. Controllable soluble protein concentration gradients in hydrogel networks. Adv. Funct. Mater. 18, 3410–3417 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. van Noort, D. et al. Stem cells in microfluidics. Biotechnol. Prog. 25, 52–60 (2009).

    CAS  PubMed  Google Scholar 

  70. Gomez-Sjoberg, R., Leyrat, A. A., Pirone, D. M., Chen, C. S. & Quake, S. R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79, 8557–8563 (2007).

    PubMed  Google Scholar 

  71. Lii, J. et al. Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal. Chem. 80, 3640–3647 (2008).

    CAS  PubMed  Google Scholar 

  72. Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679–2684 (2006).

    CAS  Google Scholar 

  73. Wosnick, J. H. & Shoichet, M. S. Three-dimensional chemical patterning of transparent hydrogels. Chem. Mater. 20, 55–60 (2008).

    CAS  Google Scholar 

  74. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009). This paper presents a powerful method of influencing stem-cell fate by locally manipulating the biochemical and biophysical properties of a 3D hydrogel matrix.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gillette, B. M. et al. In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nature Mater. 7, 636–640 (2008).

    ADS  CAS  Google Scholar 

  76. Khetani, S. R. & Bhatia, S. N. Engineering tissues for in vitro applications. Curr. Opin. Biotechnol. 17, 524–531 (2006).

    CAS  PubMed  Google Scholar 

  77. Mironov, V., Kasyanov, V., Drake, C. & Markwald, R. R. Organ printing: promises and challenges. Regen. Med. 3, 93–103 (2008).

    CAS  PubMed  Google Scholar 

  78. Lee, W. et al. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport 20, 798–803 (2009).

    PubMed  Google Scholar 

  79. Mooney, D. J. & Vandenburgh, H. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2, 205–213 (2008).

    CAS  PubMed  Google Scholar 

  80. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    ADS  CAS  PubMed  Google Scholar 

  81. Adams, G. B. et al. Therapeutic targeting of a stem cell niche. Nature Biotechnol. 25, 238–243 (2007).

    CAS  Google Scholar 

  82. Zhang, L. et al. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2008).

    CAS  PubMed  Google Scholar 

  83. Rothenfluh, D. A., Bermudez, H., O'Neil, C. P. & Hubbell, J. A. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nature Mater. 7, 248–254 (2008).

    ADS  CAS  Google Scholar 

  84. Gu, F. et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl Acad. Sci. USA 105, 2586–2591 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    CAS  PubMed  Google Scholar 

  86. Gomi, K., Kanazashi, M., Lickorish, D., Arai, T. & Davies, J. E. Bone marrow genesis after subcutaneous delivery of rat osteogenic cell-seeded biodegradable scaffolds into nude mice. J. Biomed. Mater. Res. A 71A, 602–607 (2004).

    CAS  Google Scholar 

  87. Eilken, H. M., Nishikawa, S.-I. & Schroeder, T. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457, 896–900 (2009).

    ADS  CAS  PubMed  Google Scholar 

  88. Glauche, I., Lorenz, R., Hasenclever, D. & Roeder, I. A novel view on stem cell development: analysing the shape of cellular genealogies. Cell Prolif. 42, 248–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ravin, R. et al. Potency and fate specification in CNS stem cell populations in vitro . Cell Stem Cell 3, 670–680 (2008).

    CAS  PubMed  Google Scholar 

  90. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge a US National Institutes of Health (NIH) postdoctoral training grant (CA09151) (P.M.G.); a Leukemia and Lymphoma Society Fellowship (5367-07) and the European Young Investigator award (M.P.L.); and NIH grants (AG009521, AG020961 and HL096113), a Juvenile Diabetes Research Foundation Grant (34-2008-623), a Muscular Dystrophy Association grant (4320), a California Institute for Regenerative Medicine (CIRM) Tools and Technologies grant (RT1-01001), a Stanford Bio.X award (IIP3-34), and the Baxter Foundation (H.M.B.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to M.P.L. (matthias.lutolf@epfl.ch) or H.M.B. (hblau@stanford.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutolf, M., Gilbert, P. & Blau, H. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009). https://doi.org/10.1038/nature08602

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08602

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing