Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-dimensional normal-state quantum oscillations in a superconducting heterostructure

Abstract

Semiconductor heterostructures provide an ideal platform for studying high-mobility, low-density electrons in reduced dimensions1,2,3,4. The realization of superconductivity in heavily doped diamond5, silicon6, silicon carbide7 and germanium8 suggests that Cooper pairs eventually may be directly incorporated in semiconductor heterostructures9, but these newly discovered superconductors are currently limited by their extremely large electronic disorder. Similarly, the electron mean free path in low-dimensional superconducting thin films is usually limited by interface scattering, in single-crystal or polycrystalline samples, or atomic-scale disorder, in amorphous materials, confining these examples to the extreme ‘dirty limit’10. Here we report the fabrication of a high-quality superconducting layer within a thin-film heterostructure based on SrTiO3 (the first known superconducting semiconductor11). By selectively doping a narrow region of SrTiO3 with the electron-donor niobium, we form a superconductor that is two-dimensional, as probed by the anisotropy of the upper critical magnetic field. Unlike in previous examples, however, the electron mobility is high enough that the normal-state resistance exhibits Shubnikov–de Haas oscillations that scale with the perpendicular field, indicating two-dimensional states. These results suggest that delta-doped SrTiO3 provides a model system in which to explore the quantum transport and interplay12 of both superconducting and normal electrons. They also demonstrate that high-quality complex oxide heterostructures can maintain electron coherence on the macroscopic scales probed by transport, as well as on the microscopic scales demonstrated previously13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample structure and transport characterization.
Figure 2: Two-dimensional superconducting characteristics.
Figure 3: Two-dimensional quantum oscillations in the normal state.
Figure 4: Carrier effective mass.

Similar content being viewed by others

References

  1. v. Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Article  ADS  Google Scholar 

  2. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)

    Article  ADS  CAS  Google Scholar 

  3. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  ADS  CAS  Google Scholar 

  4. Abrahams, E., Kravchenko, S. V. & Sarachik, M. P. Metallic behavior and related phenomena in two dimensions. Rev. Mod. Phys. 73, 251–266 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542–545 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Bustarret, E. et al. Superconductivity in doped cubic silicon. Nature 444, 465–468 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Ren, Z.-A. et al. Superconductivity in boron-doped SiC. J. Phys. Soc. Jpn 76, 103710 (2007)

    Article  ADS  Google Scholar 

  8. Herrmannsdörfer, T. et al. Superconducting state in a gallium-doped germanium layer at low temperatures. Phys. Rev. Lett. 102, 217003 (2009)

    Article  ADS  Google Scholar 

  9. Blase, X., Bustarret, E., Chapelier, C., Klein, T. & Marcenat, C. Superconducting group-IV semiconductors. Nature Mater. 8, 375–382 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Goldman, A. M. & Marković, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 226, 39–44 (1998)

    Article  Google Scholar 

  11. Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474–475 (1964)

    Article  ADS  CAS  Google Scholar 

  12. Rasolt, M. & Tešanović, Z. Theoretical aspects of superconductivity in very high magnetic fields. Rev. Mod. Phys. 64, 709–754 (1992)

    Article  Google Scholar 

  13. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Schubert, E. F. Delta doping of III–V compound semiconductors: fundamentals and device applications. J. Vac. Sci. Technol. A 8, 2980–2996 (1990)

    Article  ADS  CAS  Google Scholar 

  15. Schubert, E. F., Cunningham, J. E. & Tsang, W. T. Electron-mobility enhancement and electron-concentration enhancement in δ-doped n-GaAs at T = 300 K. Solid State Commun. 63, 591–594 (1987)

    Article  ADS  CAS  Google Scholar 

  16. Saifi, M. A. & Cross, L. E. Dielectric properties of strontium titanate at low temperature. Phys. Rev. B 2, 677–684 (1970)

    Article  ADS  Google Scholar 

  17. Sakudo, T. & Unoki, H. Dielectric properties of SrTiO3 at low temperatures. Phys. Rev. Lett. 26, 851–853 (1971)

    Article  ADS  CAS  Google Scholar 

  18. Müller, K. A. & Burkard, H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979)

    Article  ADS  Google Scholar 

  19. Hulm, J. K., Ashkin, M., Deis, D. W. & Jones, C. K. Superconductivity in semiconductors and semimetals. Prog. Low Temp. Phys. 6, 205–242 (1970)

    Article  CAS  Google Scholar 

  20. Nakamura, H. et al. Low temperature metallic state induced by electrostatic carrier doping of SrTiO3 . Appl. Phys. Lett. 89, 133504 (2006)

    Article  ADS  Google Scholar 

  21. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Ohtomo, A. & Hwang, H. Y. Surface depletion in doped SrTiO3 thin films. Appl. Phys. Lett. 84, 1716–1718 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Tinkham, M. Effect of fluxoid quantization on transitions of superconducting films. Phys. Rev. 129, 2413–2422 (1963)

    Article  ADS  Google Scholar 

  25. Mattheiss, L. F. Effect of the 110°K phase transition on the SrTiO3 conduction bands. Phys. Rev. B 6, 4740–4753 (1972)

    Article  ADS  CAS  Google Scholar 

  26. Uwe, H., Yoshizaki, R., Sakudo, T., Izumi, A. & Uzumaki, T. Conduction band structure of SrTiO3 . Jpn. J. Appl. Phys. 24, (suppl. 24–2)335–337 (1985)

    Article  CAS  Google Scholar 

  27. Yang, M. J. et al. Enhancement of cyclotron mass in semiconductor quantum wells. Phys. Rev. B 47, 1691–1694 (1993)

    Article  ADS  CAS  Google Scholar 

  28. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-T c superconductor. Nature 447, 565–568 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Anderson, P. W. Interlayer tunneling mechanism for high-T c superconductivity: comparison with c axis infrared experiments. Science 268, 1154–1155 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Chakravarty, S., Kee, H.-Y. & Völker, K. An explanation for a universality of transition temperatures in families of copper oxide superconductors. Nature 428, 53–55 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. R. Beasley, A. M. Goldman, A. F. Hebard, A. Kapitulnik, P. B. Littlewood, Y. Liu, A. H. MacDonald and H. Takagi for discussions, and M. Lippmaa for technical assistance.

Author Contributions Y.K. and M.K. performed sample fabrication, measurements and data analysis. C.B., B.G.K., Y.H. and H.Y.H. assisted with the planning, measurements and analysis of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Hwang.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figures S1- S3 with Legends and Supplementary References. (PDF 247 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozuka, Y., Kim, M., Bell, C. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487–490 (2009). https://doi.org/10.1038/nature08566

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08566

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing