Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of strong coupling between a micromechanical resonator and an optical cavity field

Abstract

Achieving coherent quantum control over massive mechanical resonators is a current research goal. Nano- and micromechanical devices can be coupled to a variety of systems, for example to single electrons by electrostatic1,2 or magnetic coupling3,4, and to photons by radiation pressure5,6,7,8,9 or optical dipole forces10,11. So far, all such experiments have operated in a regime of weak coupling, in which reversible energy exchange between the mechanical device and its coupled partner is suppressed by fast decoherence of the individual systems to their local environments. Controlled quantum experiments are in principle not possible in such a regime, but instead require strong coupling. So far, this has been demonstrated only between microscopic quantum systems, such as atoms and photons (in the context of cavity quantum electrodynamics12) or solid state qubits and photons13,14. Strong coupling is an essential requirement for the preparation of mechanical quantum states, such as squeezed or entangled states15,16,17,18, and also for using mechanical resonators in the context of quantum information processing, for example, as quantum transducers. Here we report the observation of optomechanical normal mode splitting19,20, which provides unambiguous evidence for strong coupling of cavity photons to a mechanical resonator. This paves the way towards full quantum optical control of nano- and micromechanical devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and characterization of the uncoupled mechanical and optical oscillator.
Figure 2: Optomechanical normal mode splitting and avoided crossing in the normal-mode frequency spectrum.

Similar content being viewed by others

References

  1. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Cleland, A. N., Aldridge, J. S., Driscoll, D. C. & Gossard, A. C. Nanomechanical displacement sensing using a quantum point contact. Appl. Phys. Lett. 81, 1699–1701 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Rabl, P. et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302(R) (2009)

    Article  ADS  Google Scholar 

  5. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–71 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and micromechanical instability of a micromirror. Nature 444, 71–75 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008)

    Article  CAS  Google Scholar 

  10. Eichenfield, M., Michael, C. P., Perahia, R. & Painter, O. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photon. 1, 416–422 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006)

    Article  ADS  Google Scholar 

  13. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Bose, S., Jacobs, K. & Knight, P. L. Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175–4186 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Vitali, D. et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Clerk, A. A., Marquardt, F. & Jacobs, K. Back-action evasion and squeezing of a mechanical resonator using a cavity detector. N. J. Phys. 10, 095010 (2008)

    Article  Google Scholar 

  19. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  20. Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Hammerer, K., Aspelmeyer, M., Polzik, E. & Zoller, P. Establishing Einstein-Podolsky-Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Wilson Rae, I., Nooshi, N., Dobrindt, J., Kippenberg, T. J. & Zwerger, W. Cavity-assisted backaction cooling of mechanical resonators. N. J. Phys. 10, 095007 (2008)

    Article  Google Scholar 

  23. Zhang, J., Peng, K. & Braunstein, S. L. Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  24. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992)

    Article  ADS  CAS  Google Scholar 

  25. Colombe, Y. et al. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  ADS  CAS  Google Scholar 

  29. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  ADS  CAS  Google Scholar 

  30. Zhu, Y. et al. Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations. Phys. Rev. Lett. 64, 2499–2502 (1990)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Corbitt, C. Genes, S. Goßler, P. K. Lam, G. Milburn, P. Rabl and P. Zoller for discussions. We also thank M. Metzler, R. Ilic and M. Skvarla (CNF), and K. C. Schwab and J. Hertzberg, for microfabrication support, and R. Blach for technical support. We acknowledge financial support from the Austrian Science Fund FWF, the European Commission and the Foundational Questions Institute. S.G. is a recipient of a DOC fellowship of the Austrian Academy of Sciences; S.G. and M.R.V. are members of the FWF doctoral programme Complex Quantum Systems (CoQuS).

Author Contributions All authors have made a significant contribution to the concept, design, execution or interpretation of the presented work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Aspelmeyer.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Figures S1-S3 with Legends and Supplementary References. (PDF 639 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gröblacher, S., Hammerer, K., Vanner, M. et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009). https://doi.org/10.1038/nature08171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08171

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing