Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A conserved ubiquitination pathway determines longevity in response to diet restriction

Abstract

Dietary restriction extends longevity in diverse species, suggesting that there is a conserved mechanism for nutrient regulation and prosurvival responses1. Here we show a role for the HECT (homologous to E6AP carboxy terminus) E3 ubiquitin ligase WWP-1 as a positive regulator of lifespan in Caenorhabditis elegans in response to dietary restriction. We find that overexpression of wwp-1 in worms extends lifespan by up to 20% under conditions of ad libitum feeding. This extension is dependent on the FOXA transcription factor pha-4, and independent of the FOXO transcription factor daf-16. Reduction of wwp-1 completely suppresses the extended longevity of diet-restricted animals. However, the loss of wwp-1 does not affect the long lifespan of animals with compromised mitochondrial function or reduced insulin/IGF-1 signalling. Overexpression of a mutant form of WWP-1 lacking catalytic activity suppresses the increased lifespan of diet-restricted animals, indicating that WWP-1 ubiquitin ligase activity is essential for longevity. Furthermore, we find that the E2 ubiquitin conjugating enzyme, UBC-18, is essential and specific for diet-restriction-induced longevity. UBC-18 interacts with WWP-1 and is required for the ubiquitin ligase activity of WWP-1 and the extended longevity of worms overexpressing wwp-1. Taken together, our results indicate that WWP-1 and UBC-18 function to ubiquitinate substrates that regulate diet-restriction-induced longevity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: wwp-1 is required and specific for the extension of lifespan by dietary restriction.
Figure 2: WWP-1 ubiquitin ligase activity is essential for diet-restriction-induced longevity.
Figure 3: WWP-1 exhibits ubiquitin ligase activity in a UBC-18 dependent manner in vitro.
Figure 4: WWP-1 and UBC-18 function together to regulate diet-restriction-induced longevity.

Similar content being viewed by others

References

  1. Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. Pirozzi, G. et al. Identification of novel human WW domain-containing proteins by cloning of ligand targets. J. Biol. Chem. 272, 14611–14616 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. Huang, K. et al. A HECT domain ubiquitin ligase closely related to the mammalian protein WWP1 is essential for Caenorhabditis elegans embryogenesis. Gene 252, 137–145 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Astin, J. W., O’Neil, N. J. & Kuwabara, P. E. Nucleotide excision repair and the degradation of RNA pol II by the Caenorhabditis elegans XPA and Rsp5 orthologues, RAD-3 and WWP-1. DNA Repair (Amst.) 7, 267–280 (2008)

    Article  CAS  Google Scholar 

  5. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 13091–13096 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mair, W., Panowski, S. H., Shaw, R. J. & Dillin, A. Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans. PLoS One 4, e4535 (2009)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447, 545–549 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Panowski, S. H., Wolff, S., Aguilaniu, H., Durieux, J. & Dillin, A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447, 550–555 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977)

    Article  CAS  PubMed  Google Scholar 

  10. Greer, E. L. et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646–1656 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genet. 28, 139–145 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Feng, J., Bussiere, F. & Hekimi, S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev. Cell 1, 633–644 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet. 33, 40–48 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Kimura, K. D., Tissenbaum, H. A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. Bernassola, F., Karin, M., Ciechanover, A. & Melino, G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14, 10–21 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Qiu, X. & Fay, D. S. ARI-1, an RBR family ubiquitin-ligase, functions with UBC-18 to regulate pharyngeal development in C. elegans. Dev. Biol. 291, 239–252 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Fay, D. S. et al. The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18. Dev. Biol. 271, 11–25 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Fay, D. S., Large, E., Han, M. & Darland, M. lin-35/Rb and ubc-18, an E2 ubiquitin-conjugating enzyme, function redundantly to control pharyngeal morphogenesis in C. elegans. Development 130, 3319–3330 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Wolkow, C. A., Kimura, K. D., Lee, M. S. & Ruvkun, G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290, 147–150 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402, 804–809 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Parkes, T. L. et al. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nature Genet. 19, 171–174 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Alcedo, J. & Kenyon, C. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41, 45–55 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Libina, N., Berman, J. R. & Kenyon, C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489–502 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Sheaffer, K. L., Updike, D. L. & Mango, S. E. The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr. Biol. 18, 1355–1364 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dillin, A., Crawford, D. K. & Kenyon, C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298, 830–834 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Hope, I. C. elegans: A Practical Approach Ch. 4 62–63 (Oxford Univ. Press, 1999)

    Google Scholar 

  31. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leverson, J. D. et al. The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol. Biol. Cell 11, 2315–2325 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xia, Y., Pao, G. M., Chen, H. W., Verma, I. M. & Hunter, T. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J. Biol. Chem. 278, 5255–5263 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Rual, J. F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dillin, A., Crawford, D. K. & Kenyon, C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298, 830–834 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 1, e12 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wolff, S. et al. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124, 1039–1053 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Dillin laboratory for discussion, and P. Marks and H. Sun for their help. We thank A. Brunet for the solid-plate diet-restriction protocol. wwp-1(ok1102) was generated by the C. elegans Gene Knockout Consortium, and some strains were provided by the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health (NIH) National Center for Research Resources (NCRR). This work was supported by grants from the National Cancer Institute (CA 14195, CA 54418 and CA 82683) to T.H., and grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK 070696) and the National Institute on Aging (AG 027463 and AG 032560), and the Ellison Medical and Glenn Medical Foundations to A.D. A.C.C. was supported by an American Cancer Society Postdoctoral Fellowship and The Rossi Endowment. T.H. is a Frank and Else Schilling American Cancer Society Professor.

Author Contributions A.C.C. designed the experiments and analysed the data. A.C.C. and Z.L. performed the experiments. A.D. and T.H. supervised the design and data interpretation. The manuscript was written by A.C.C. and edited by A.D. and T.H. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Dillin.

Supplementary information

Supplementary information

This file contains Supplementary Tables 1-7, Supplementary Figures 1-15 with Legends and Supplementary References. (PDF 12213 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrano, A., Liu, Z., Dillin, A. et al. A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460, 396–399 (2009). https://doi.org/10.1038/nature08130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08130

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing