Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Listeria transcriptional landscape from saprophytism to virulence

Abstract

The bacterium Listeria monocytogenes is ubiquitous in the environment and can lead to severe food-borne infections. It has recently emerged as a multifaceted model in pathogenesis. However, how this bacterium switches from a saprophyte to a pathogen is largely unknown. Here, using tiling arrays and RNAs from wild-type and mutant bacteria grown in vitro, ex vivo and in vivo, we have analysed the transcription of its entire genome. We provide the complete Listeria operon map and have uncovered far more diverse types of RNAs than expected: in addition to 50 small RNAs (<500 nucleotides), at least two of which are involved in virulence in mice, we have identified antisense RNAs covering several open-reading frames and long overlapping 5′ and 3′ untranslated regions. We discovered that riboswitches can act as terminators for upstream genes. When Listeria reaches the host intestinal lumen, an extensive transcriptional reshaping occurs with a SigB-mediated activation of virulence genes. In contrast, in the blood, PrfA controls transcription of virulence genes. Remarkably, several non-coding RNAs absent in the non-pathogenic species Listeria innocua exhibit the same expression patterns as the virulence genes. Together, our data unravel successive and coordinated global transcriptional changes during infection and point to previously unknown regulatory mechanisms in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L. monocytogenes operon map and small RNAs.
Figure 2: Functional analysis of Rli38, RliB and LysRS.
Figure 3: Cis-regulatory RNA-elements.
Figure 4: The MogR locus.
Figure 5: Gene expression analysis.
Figure 6: Virulence gene expression and gene clusters.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

Data deposits

Raw data are available from ArrayExpress (http://www.ebi.ac.uk/arrayexpress) under accession numbers E-MEXP-2138 for gene expression sub-array analysis and E-MEXP-2142 for tiling sub-array analysis.

References

  1. Cossart, P. & Toledo-Arana, A. Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect. 10, 1041–1050 (2008)

    Article  CAS  Google Scholar 

  2. Lecuit, M. Understanding how Listeria monocytogenes targets and crosses host barriers. Clin. Microbiol. Infect. 11, 430–436 (2005)

    Article  CAS  Google Scholar 

  3. Hamon, M., Bierne, H. & Cossart, P. Listeria monocytogenes: a multifaceted model. Nature Rev. Microbiol. 4, 423–434 (2006)

    Article  CAS  Google Scholar 

  4. Glaser, P. et al. Comparative genomics of Listeria species. Science 294, 849–852 (2001)

    ADS  CAS  PubMed  Google Scholar 

  5. Dussurget, O., Pizarro-Cerda, J. & Cossart, P. Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol. 58, 587–610 (2004)

    Article  CAS  Google Scholar 

  6. Leimeister-Wachter, M. et al. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes . Proc. Natl Acad. Sci. USA 87, 8336–8340 (1990)

    Article  ADS  CAS  Google Scholar 

  7. Mengaud, J. et al. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol. Microbiol. 5, 2273–2283 (1991)

    Article  CAS  Google Scholar 

  8. Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes . Cell 110, 551–561 (2002)

    Article  Google Scholar 

  9. Garner, M. R., Njaa, B. L., Wiedmann, M. & Boor, K. J. Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect. Immun. 74, 876–886 (2006)

    Article  CAS  Google Scholar 

  10. Gahan, C. G. & Hill, C. Gastrointestinal phase of Listeria monocytogenes infection. J. Appl. Microbiol. 98, 1345–1353 (2005)

    Article  CAS  Google Scholar 

  11. Mandin, P. et al. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol. 57, 1367–1380 (2005)

    Article  CAS  Google Scholar 

  12. Barry, T., Kelly, M., Glynn, B. & Peden, J. Molecular cloning and phylogenetic analysis of the small cytoplasmic RNA from Listeria monocytogenes . FEMS Microbiol. Lett. 173, 47–53 (1999)

    Article  CAS  Google Scholar 

  13. Christiansen, J. K. et al. Identification of small Hfq-binding RNAs in Listeria monocytogenes . RNA 12, 1383–1396 (2006)

    Article  CAS  Google Scholar 

  14. Mandin, P. et al. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Res. 35, 962–974 (2007)

    Article  CAS  Google Scholar 

  15. Nielsen, J. S. et al. Identification of a sigma B-dependent small noncoding RNA in Listeria monocytogenes . J. Bacteriol. 190, 6264–6270 (2008)

    Article  CAS  Google Scholar 

  16. Toledo-Arana, A., Repoila, F. & Cossart, P. Small noncoding RNAs controlling pathogenesis. Curr. Opin. Microbiol. 10, 182–188 (2007)

    Article  CAS  Google Scholar 

  17. Christiansen, J. K. et al. The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J. Bacteriol. 186, 3355–3362 (2004)

    Article  CAS  Google Scholar 

  18. Yazaki, J., Gregory, B. D. & Ecker, J. R. Mapping the genome landscape using tiling array technology. Curr. Opin. Plant Biol. 10, 534–542 (2007)

    Article  CAS  Google Scholar 

  19. Gregory, B. D., Yazaki, J. & Ecker, J. R. Utilizing tiling microarrays for whole-genome analysis in plants. Plant J. 53, 636–644 (2008)

    Article  CAS  Google Scholar 

  20. David, L. et al. A high-resolution map of transcription in the yeast genome. Proc. Natl Acad. Sci. USA 103, 5320–5325 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Selinger, D. W. et al. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotechnol. 18, 1262–1268 (2000)

    Article  CAS  Google Scholar 

  22. McGrath, P. T. et al. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nature Biotechnol. 25, 584–592 (2007)

    Article  CAS  Google Scholar 

  23. Landt, S. G. et al. Small non-coding RNAs in Caulobacter crescentus . Mol. Microbiol. 68, 600–614 (2008)

    Article  CAS  Google Scholar 

  24. Disson, O. et al. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455, 1114–1118 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Winkler, W. C. Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9, 594–602 (2005)

    Article  CAS  Google Scholar 

  26. Brantl, S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr. Opin. Microbiol. 10, 102–109 (2007)

    Article  CAS  Google Scholar 

  27. Coppins, R. L., Hall, K. B. & Groisman, E. A. The intricate world of riboswitches. Curr. Opin. Microbiol. 10, 176–181 (2007)

    Article  CAS  Google Scholar 

  28. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33 (Database issue). D121–D124 (2005)

    Article  CAS  Google Scholar 

  29. Loh, E., Gripenland, J. & Johansson, J. Control of Listeria monocytogenes virulence by 5′-untranslated RNA. Trends Microbiol. 14, 294–298 (2006)

    Article  CAS  Google Scholar 

  30. Grundling, A., Burrack, L. S., Bouwer, H. G. & Higgins, D. E. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc. Natl Acad. Sci. USA 101, 12318–12323 (2004)

    Article  ADS  Google Scholar 

  31. Raengpradub, S., Wiedmann, M. & Boor, K. J. Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl. Environ. Microbiol. 74, 158–171 (2008)

    Article  CAS  Google Scholar 

  32. Kazmierczak, M. J., Mithoe, S. C., Boor, K. J. & Wiedmann, M. Listeria monocytogenes sigma B regulates stress response and virulence functions. J. Bacteriol. 185, 5722–5734 (2003)

    Article  CAS  Google Scholar 

  33. Hain, T. et al. Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigma B regulon. BMC Microbiol. 8, 20 (2008)

    Article  Google Scholar 

  34. Dussurget, O. et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45, 1095–1106 (2002)

    Article  CAS  Google Scholar 

  35. Chakraborty, T., Hain, T. & Domann, E. Genome organization and the evolution of the virulence gene locus in Listeria species. Int. J. Med. Microbiol. 290, 167–174 (2000)

    Article  CAS  Google Scholar 

  36. Scortti, M. et al. The PrfA virulence regulon. Microbes Infect. 9, 1196–1207 (2007)

    Article  CAS  Google Scholar 

  37. Chico-Calero, I. et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria . Proc. Natl Acad. Sci. USA 99, 431–436 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Charpentier and the members of her group for providing the RACE protocol. We thank L. Frangeul for helping with L. monocytogenes annotation files. J.J. is supported by the Swedish Research Council grants K2008-58X-15144-05-3 and 621-2006-4450 and EU (BacRNA 2005 Contract N° 018618). Work in the laboratory of P.C. received financial support from Institut Pasteur (GPH 9), Inserm, INRA, EU (BacRNA 2005-018618), ANR (ANR-05-MIIM-026-01) and ERC (Advanced Grant 233348). A.T.-A. was an EMBO long-term fellow. P.C. is an international research scholar of the Howard Hughes Medical Institute.

Author Contributions P.C. planned the project. A.T.-A., O.D., M.L. and P.C. designed the research. A.T.-A., O.D., G.N., N.S., H.G.-R., D.B., E.L., J.G., T.T., K.V., M.-A.N., G.S. and M.L. performed the experiments. A.T.-A., O.D., M.B., M.V., B.R., J.-Y.C., M.L., J.J. and P.C. analysed the experiments. A.T.-A., O.D. and P.C. wrote the paper and co-authors commented on it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Cossart.

Supplementary information

Supplementary Information

This file contains Supplementary Materials and Methods, Supplementary References and Supplementary Tables S1-S5. (PDF 765 kb)

Supplementary Table

This file contains Supplementary Table 6. (XLS 485 kb)

Supplementary Figures

This file contains Supplementary Figures S1-S16 with Legends. (PDF 6908 kb)

Supplementary Figures

This file contains Supplementary Figures S17-S32 with Legends. (PDF 18172 kb)

Supplementary Figures

This file contains Supplementary Figures S33-S40 with Legends. (PDF 14585 kb)

Supplementary Figures

This file contains Supplementary Figures S41-48 with Legends. (PDF 14812 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo-Arana, A., Dussurget, O., Nikitas, G. et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459, 950–956 (2009). https://doi.org/10.1038/nature08080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08080

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing