Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Total synthesis of eudesmane terpenes by site-selective C–H oxidations

Abstract

From menthol to cholesterol to Taxol, terpenes are a ubiquitous group of molecules (over 55,000 members isolated so far) that have long provided humans with flavours, fragrances, hormones, medicines and even commercial products such as rubber1. Although they possess a seemingly endless variety of architectural complexities, the biosynthesis of terpenes often occurs in a unified fashion as a ‘two-phase’ process2,3. In the first phase (the cyclase phase), simple linear hydrocarbon phosphate building blocks are stitched together by means of ‘prenyl coupling’, followed by enzymatically controlled molecular cyclizations and rearrangements. In the second phase (the oxidase phase), oxidation of alkenes and carbon–hydrogen bonds results in a large array of structural diversity. Although organic chemists have made great progress in developing the logic3,4,5 needed for the cyclase phase of terpene synthesis, particularly in the area of polyene cyclizations6, much remains to be learned if the oxidase phase is to be mimicked in the laboratory. Here we show how the logic of terpene biosynthesis has inspired the highly efficient and stereocontrolled syntheses of five oxidized members of the eudesmane family of terpenes in a modicum of steps by a series of simple carbocycle-forming reactions followed by multiple site-selective inter- and intramolecular carbon–hydrogen oxidations. This work establishes an intellectual framework in which to conceive the laboratory synthesis of other complex terpenes using a ‘two-phase’ approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of the ‘two-phase’ approach to terpene total synthesis.
Figure 2: Simple, enantioselective total synthesis of dihydrojunenol (4).
Figure 3: Total syntheses of 4-epiajanol (5) and dihydroxyeudesmane (6) through site-specific C–H oxidations of dihydrojunenol (4).
Figure 4: Total syntheses of pygmol (7) and eudesmantetraol (8) through site-specific C–H oxidations of 16.
Figure 5: Pyramid diagram for the retrosynthetic planning of terpene synthesis using a ‘two-phase’ approach.

Similar content being viewed by others

References

  1. Nicolaou, K. C. & Montagnon, T. Molecules That Changed the World (Wiley-VCH, 2008)

    Google Scholar 

  2. Davis, E. M. & Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes and diterpenes. Top. Curr. Chem. 209, 53–95 (2000)

    Article  CAS  Google Scholar 

  3. Maimone, T. J. & Baran, P. S. Modern synthetic efforts toward biologically active terpenes. Nature Chem. Biol. 3, 396–407 (2007)

    Article  CAS  Google Scholar 

  4. Corey, E. J. & Cheng, X. M. The Logic of Chemical Synthesis (Wiley, 1995)

    Google Scholar 

  5. Wilson, R. & Danishefsky, S. J. Pattern recognition in retrosynthetic analysis: snapshots in total synthesis. J. Org. Chem. 72, 4293–4305 (2007)

    Article  CAS  Google Scholar 

  6. Yoder, R. A. & Johnston, J. N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 105, 4730–4756 (2005)

    Article  CAS  Google Scholar 

  7. Ruzicka, L. Isoprene rule and the biogenesis of terpenic compounds. Experentia 9, 357–367 (1953)

    Article  CAS  Google Scholar 

  8. Eschenmoser, A. & Arigoni, D. Revisited after 50 years: the ‘Stereochemical interpretation of the biogenetic isoprene rule for the triterpenes’. Helv. Chim. Acta 88, 3011–3050 (2005)

    Article  CAS  Google Scholar 

  9. Jennewein, S., Rithner, C. D., Williams, R. M. & Croteau, R. B. Taxol biosynthesis: taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl Acad. Sci. USA 98, 13595–13600 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Denis, J. N. et al. Highly efficient, practical approach to natural Taxol. J. Am. Chem. Soc. 110, 5917–5919 (1988)

    Article  CAS  Google Scholar 

  11. Mello, R., Fiorentino, M., Fusco, C. & Curci, R. Oxidations by methyl(trifluoromethyl)dioxirane. 2. Oxyfunctionalization of saturated hydrocarbons. J. Am. Chem. Soc. 111, 6749–6757 (1989)

    Article  CAS  Google Scholar 

  12. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem. Rev. 104, 939–986 (2004)

    Article  CAS  Google Scholar 

  13. Groves, J. T., Bonchio, M., Carofiglio, T. & Shalyaev, K. Rapid catalytic oxygenation of hydrocarbons by ruthenium pentafluorophenylporphyrin complexes: evidence for the involvement of a Ru(III) intermediate. J. Am. Chem. Soc. 118, 8961–8962 (1996)

    Article  CAS  Google Scholar 

  14. Wender, P. A., Hilinski, M. K. & Mayweg, A. V. W. Late-stage intermolecular C-H activation for lead diversification: a highly chemoselective oxyfunctionalization of the C-9 position of potent bryostatin analogues. Org. Lett. 7, 79–82 (2005)

    Article  CAS  Google Scholar 

  15. Brodsky, B. H. & Du Bois, J. Oxaziridine-mediated catalytic hydroxylation of unactivated 3° C–H bonds using hydrogen peroxide. J. Am. Chem. Soc. 127, 15391–15393 (2005)

    Article  CAS  Google Scholar 

  16. Yang, J., Gabriele, B., Belvedere, S., Huang, Y. & Breslow, R. Catalytic oxidations of steroid substrates by artificial cytochrome P-450 enzymes. J. Org. Chem. 67, 5057–5067 (2002)

    Article  CAS  Google Scholar 

  17. Chen, M. S. & White, M. C. A predictably selective aliphatic C-H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Wu, Q.-X., Shi, Y.-P. & Jia, Z.-J. Eudesmane sesquiterpenoids from the Asteraceae family. Nat. Prod. Rep. 23, 699–734 (2006)

    Article  CAS  Google Scholar 

  19. Cardona, L., Garcia, B., Gimenez, E. & Pedro, J. R. A shorter route to the synthesis of (+)-junenol, isojunenol, and their coumarate esters from (-)-santonin. Tetrahedron 48, 851–860 (1992)

    Article  CAS  Google Scholar 

  20. Levine, S. R., Krout, M. R. & Stoltz, B. M. Catalytic enantioselective approach to the eudesmane sesquiterpenoids: total synthesis of (+)-carissone. Org. Lett. 11, 289–292 (2009)

    Article  CAS  Google Scholar 

  21. Paknikar, S. K., Dhekne, V. V. & Joshi, G. D. Synthesis of 4α, 6α-dihydroxyeudesmane: revision of stereochemistry at C-4 of ajanol. Indian J. Chem. 15B, 86–87 (1977)

    Google Scholar 

  22. Zhao, P.-J., Li, G.-H. & Shen, Y.-M. New chemical constituents from the endophyte Streptomyces species LR4612 cultivated on Maytenus hookeri. Chem. Biodivers. 3, 337–342 (2006)

    Article  CAS  Google Scholar 

  23. Irwin, M. A. & Geissman, T. A. Sesquiterpene alcohols from Artemisia pygmaea . Phytochemistry 12, 849–852 (1973)

    Article  CAS  Google Scholar 

  24. De Marino, S. et al. New sesquiterpene lactones from Laurus nobilis leaves as inhibitors of nitric oxide production. Planta Med. 71, 706–710 (2005)

    Article  CAS  Google Scholar 

  25. Betancort, J. M. & Barbas, C. F. Catalytic direct asymmetric Michael reactions: taming naked aldehyde donors. Org. Lett. 3, 3737–3740 (2001)

    Article  CAS  Google Scholar 

  26. Chi, Y. & Gellman, S. H. Diphenylprolinol methyl ether: a highly enantioselective catalyst for Michael addition of aldehydes to simple enones. Org. Lett. 7, 4253–4256 (2005)

    Article  CAS  Google Scholar 

  27. Chen, K., Richter, J. M. & Baran, P. S. 1,3-diol synthesis via controlled, radical-mediated C-H functionalization. J. Am. Chem. Soc. 130, 7247–7249 (2008)

    Article  CAS  Google Scholar 

  28. Schreiber, J. & Eschenmoser, A. Über die relative Geschwindigkeit der Chromosäureoxydation sekundärer, alicyclischer Alkohole. Vorläufige Mitteilung. Helv. Chim. Acta 38, 1529–1536 (1955)

    Article  CAS  Google Scholar 

  29. Fraunhoffer, K. J., Bachovchin, D. A. & White, M. C. Hydrocarbon oxidation vs C-C bond-forming approaches for efficient syntheses of oxygenated molecules. Org. Lett. 7, 223–226 (2005)

    Article  CAS  Google Scholar 

  30. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Eschenmoser for discussions and to Bristol-Myers Squibb for financial support. M. Morón Galán and Y. Ishihara are acknowledged for technical contributions to the early stages of this project. We are grateful to B. Shi and A. Reingold for assistance with high-performance liquid chromatography and X-ray crystallographic analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil S. Baran.

Additional information

The X-ray crystallographic coordinates for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 718278 (5), CCDC 719000 (6), CCDC 718279 (15), CCDC 718280 (19), CCDC 718281 (21) and CCDC 718282 (22). These data can be obtained free of charge from the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/data_request/cif).

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Methods, Supplementary Figures S1-S5, Supplementary References and Supplementary Data. (PDF 4149 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Baran, P. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459, 824–828 (2009). https://doi.org/10.1038/nature08043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08043

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing