A low-energy core-collapse supernova without a hydrogen envelope

  • Nature volume 459, pages 674677 (04 June 2009)
  • doi:10.1038/nature08023
  • Download Citation
Published online:


The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf–Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel1,2,3. An alternative origin for low-energy supernovae is the collapse of the oxygen–neon core of a star of 7–9 solar masses4,5. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events6). This discovery could link these faint supernovae to some long-duration γ-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long γ-ray bursts, the afterglows of which do not show evidence of associated supernovae7,8,9.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    , & Supernovae, jets, and collapsars. Astrophys. J. 550, 410–425 (2001)

  2. 2.

    et al. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003)

  3. 3.

    , & Explosive nucleosynthesis from gamma-ray burst and hypernova progenitors: direct collapse versus fallback. Astrophys. J. 650, 1028–1047 (2006)

  4. 4.

    Evolution of 8–10 solar mass stars toward electron capture supernovae. I. Formation of electron-degenerate O + Ne + Mg cores. Astrophys. J. 277, 791–805 (1984)

  5. 5.

    , & Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astron. Astrophys. 450, 345–350 (2006)

  6. 6.

    et al. SN 2002cx: The most peculiar known type Ia supernova. Publ. Astron. Soc. Pacif. 115, 453–473 (2003)

  7. 7.

    et al. An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova. Nature 444, 1050–1052 (2006)

  8. 8.

    et al. A novel explosive process is required for the γ-ray burst GRB 060614. Nature 444, 1053–1055 (2006)

  9. 9.

    et al. No supernovae associated with two long-duration γ-ray bursts. Nature 444, 1047–1049 (2006)

  10. 10.

    , , & Supernova 2008ha in UGC 12682. Central Bureau Electr. Telegr. 1567, (2008)

  11. 11.

    et al. Supernova 2008ha in UGC 12682. Central Bureau Electr. Telegr. 1576, (2008)

  12. 12.

    et al. Low-luminosity type II supernovae: spectroscopic and photometric evolution. Mon. Not. R. Astron. Soc. 347, 74–94 (2004)

  13. 13.

    et al. The carbon-rich type Ic SN 2007gr: the photospheric phase. Astrophys. J. 673, L155–L158 (2008)

  14. 14.

    et al. The metamorphosis of SN 1998bw. Astrophys. J. 555, 900–917 (2001)

  15. 15.

    et al. SN 2005cs in M51. II. Complete evolution in the optical and the near-infrared. Mon. Not. R. Astron. Soc. 394, 2266–2282 (2009)

  16. 16.

    Type I supernovae. I—Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982)

  17. 17.

    , , & A common explosion mechanism for type Ia supernovae. Science 315, 825–828 (2007)

  18. 18.

    et al. Can differences in the nickel abundance in Chandrasekhar-mass models explain the relation between the brightness and decline rate of normal type IA supernovae? Astrophys. J. 547, 988–994 (2001)

  19. 19.

    et al. Reading the spectra of the most peculiar type Ia supernova 2002cx. Publ. Astron. Soc. Pacif. 116, 903–908 (2004)

  20. 20.

    et al. Late-time spectroscopy of SN 2002cx: the prototype of a new subclass of type Ia supernovae. Astron. J. 132, 189–196 (2006)

  21. 21.

    et al. The peculiar SN 2005hk: do some type Ia supernovae explode as deflagrations? Publ. Astron. Soc. Pacif. 119, 360–387 (2007)

  22. 22.

    et al. The evolution of the peculiar type Ia supernova SN 2005hk over 400 days. Astrophys. J. 680, 580–592 (2008)

  23. 23.

    , & Deflagrations and detonations in thermonuclear supernovae. Phys. Rev. Lett. 92, 211102 (2004)

  24. 24.

    The absolute magnitudes of type IA supernovae. Astrophys. J. 413, L105–L108 (1993)

  25. 25.

    et al. The fading of supernova 1997D. Mon. Not. R. Astron. Soc. 322, 361–368 (2001)

  26. 26.

    , & Accreting white dwarf models of type I supernovae. III—Carbon deflagration supernovae. Astrophys. J. 286, 644–658 (1984)

  27. 27.

    et al. Supernova 2007J in UGC 1778. Central Bureau Electr. Telegr. 926, 1 (2007)

  28. 28.

    et al. Supernova 2007J in UGC 1778. Central Bureau Electr. Telegr. 817, 1 (2007)

  29. 29.

    et al. The peculiar type IA SN 1991T—Detonation of a white dwarf? Astrophys. J. 384, L15–L18 (1992)

  30. 30.

    et al. Photometry and spectroscopy of GRB 030329 and its associated supernova 2003dh: the first two months. Astrophys. J. 599, 394–407 (2003)

Download references


This work, conducted as part of the European Science Foundation EURYI Awards scheme, was supported by funds from the Participating Organisations of EURYI and the EC Sixth Framework Programme. The work of S.B., E.C. and M.T. was supported by grants of the PRIN of Italian Ministry of University and Science Research. This paper is based on observations collected at TNG, NOT, LT (La Palma Canary Island, Spain), at Ekar (Asiago Observatory, Italy), at the Begues Observatory and Arguines Observatory telescopes (Barcelona and Segorbe, Spain), at the Taurus Hill Observatory (Varkaus, Finland), at the Calar Alto Observatory (Spain) and at the ESO-UT2 (Paranal, Chile). Our analysis included data from the SUSPECT Archive (http://bruford.nhn.ou.edu/~suspect/index1.html). This manuscript made use of information contained in the Bright Supernova web pages (D. Bishop), as part of the Rochester Academy of Sciences.

Author information


  1. Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK

    • S. Valenti
    • , A. Pastorello
    •  & S. J. Smartt
  2. INAF Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova, Italy

    • E. Cappellaro
    • , S. Benetti
    • , P. A. Mazzali
    • , A. Harutyunyan
    •  & L. Zampieri
  3. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741 Garching bei München, Germany

    • P. A. Mazzali
    •  & S. Taubenberger
  4. Begues Observatory, Santpere 6 Casa 22, 08859 Begues, Barcelona, Spain

    • J. Manteca
  5. Spitzer Science Center, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, USA

    • N. Elias-Rosa
  6. Calle de la Guardia Civil 22, 46020 Valencia, Spain

    • R. Ferrando
  7. Fundación Galileo Galilei-INAF, Telescopio Nazionale Galileo, E-38700 Santa Cruz de la Palma, Tenerife, Spain

    • A. Harutyunyan
  8. Taurus Hill Observatory, Härcämäentie 88, 79480 Kangaslampi, Finland

    • V. P. Hentunen
    •  & M. Nissinen
  9. Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, FI-21500 Piikkiö, Finland

    • V. P. Hentunen
  10. INAF Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste, Italy

    • E. Pian
  11. INAF Osservatorio Astronomico di Catania, 78 Via S. Sofia, 95123 Catania, Italy

    • M. Turatto


  1. Search for S. Valenti in:

  2. Search for A. Pastorello in:

  3. Search for E. Cappellaro in:

  4. Search for S. Benetti in:

  5. Search for P. A. Mazzali in:

  6. Search for J. Manteca in:

  7. Search for S. Taubenberger in:

  8. Search for N. Elias-Rosa in:

  9. Search for R. Ferrando in:

  10. Search for A. Harutyunyan in:

  11. Search for V. P. Hentunen in:

  12. Search for M. Nissinen in:

  13. Search for E. Pian in:

  14. Search for M. Turatto in:

  15. Search for L. Zampieri in:

  16. Search for S. J. Smartt in:

Corresponding author

Correspondence to S. Valenti.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Methods and Data, Supplementary Tables 1-2, Supplementary Figures 1-4 with Legends and Supplementary References.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.