Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit

Abstract

The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism1. The PB2 subunit binds the 5′ cap of host pre-mRNAs2,3,4, which are subsequently cleaved after 10–13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase6,7. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease8. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated9. These results will facilitate the optimisation of endonuclease inhibitors10,11,12 as potential new anti-influenza drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manganese ions stabilize PA-Nter.
Figure 2: Endonuclease activity of PA-Nter.
Figure 3: Three-dimensional structure of PA-Nter.
Figure 4: Comparison of PA-Nter with other nucleases of the PD-(D/E)XK superfamily.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors have been deposited with the Protein Data Bank (PDB) under accession codes 2W69 and R2W69SF.

References

  1. Plotch, S. J., Bouloy, M., Ulmanen, I. & Krug, R. M. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23, 847–858 (1981)

    Article  CAS  Google Scholar 

  2. Li, M. L., Rao, P. & Krug, R. M. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J. 20, 2078–2086 (2001)

    Article  CAS  Google Scholar 

  3. Fechter, P. et al. Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J. Biol. Chem. 278, 20381–20388 (2003)

    Article  CAS  Google Scholar 

  4. Guilligay, D. et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nature Struct. Mol. Biol. 15, 500–506 (2008)

    Article  CAS  Google Scholar 

  5. Shi, L., Summers, D. F., Peng, Q. & Galarz, J. M. Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell mRNA and functions only as the trimeric enzyme. Virology 208, 38–47 (1995)

    Article  CAS  Google Scholar 

  6. Doan, L., Handa, B., Roberts, N. A. & Klumpp, K. Metal ion catalysis of RNA cleavage by the influenza virus endonuclease. Biochemistry 38, 5612–5619 (1999)

    Article  CAS  Google Scholar 

  7. Klumpp, K., Doan, L., Roberts, N. A. & Handa, B. RNA and DNA hydrolysis are catalyzed by the influenza virus endonuclease. J. Biol. Chem. 275, 6181–6188 (2000)

    Article  CAS  Google Scholar 

  8. Tomassini, J. et al. Inhibition of cap (m7GpppXm)-dependent endonuclease of influenza virus by 4-substituted 2,4-dioxobutanoic acid compounds. Antimicrob. Agents Chemother. 38, 2827–2837 (1994)

    Article  CAS  Google Scholar 

  9. Hara, K., Schmidt, F. I., Crow, M. & Brownlee, G. G. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J. Virol. 80, 7789–7798 (2006)

    Article  CAS  Google Scholar 

  10. Hastings, J. C., Selnick, H., Wolanski, B. & Tomassini, J. E. Anti-influenza virus activities of 4-substituted 2,4-dioxobutanoic acid inhibitors. Antimicrob. Agents Chemother. 40, 1304–1307 (1996)

    Article  CAS  Google Scholar 

  11. Tomassini, J. E. et al. A novel antiviral agent which inhibits the endonuclease of influenza viruses. Antimicrob. Agents Chemother. 40, 1189–1193 (1996)

    Article  CAS  Google Scholar 

  12. Parkes, K. E. et al. Use of a pharmacophore model to discover a new class of influenza endonuclease inhibitors. J. Med. Chem. 46, 1153–1164 (2003)

    Article  CAS  Google Scholar 

  13. Fodor, E. et al. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76, 8989–9001 (2002)

    Article  CAS  Google Scholar 

  14. Lee, M. T. et al. Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase. Nucleic Acids Res. 30, 429–438 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Honda, A., Mizumoto, K. & Ishihama, A. Minimum molecular architectures for transcription and replication of the influenza virus. Proc. Natl Acad. Sci. USA 99, 13166–13171 (2002)

    Article  ADS  CAS  Google Scholar 

  16. He, X. et al. Crystal structure of the polymerase PAC–PB1N complex from an avian influenza H5N1 virus. Nature 454, 1123–1126 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Obayashi, E. et al. The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature 454, 1127–1131 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Nishino, T., Komori, K., Tsuchiya, D., Ishino, Y. & Morikawa, K. Crystal structure of the archaeal Holliday junction resolvase Hjc and implications for DNA recognition. Structure 9, 197–204 (2001)

    Article  CAS  Google Scholar 

  19. Horton, N. C. & Perona, J. J. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Biochemistry 43, 6841–6857 (2004)

    Article  CAS  Google Scholar 

  20. Knizewski, L., Kinch, L. N., Grishin, N. V., Rychlewski, L. & Ginalski, K. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches. BMC Struct. Biol. 7, 40 (2007)

    Article  Google Scholar 

  21. Beese, L. S. & Steitz, T. A. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10, 25–33 (1991)

    Article  CAS  Google Scholar 

  22. Viadiu, H. & Aggarwal, A. K. The role of metals in catalysis by the restriction endonuclease BamHI. Nature Struct. Biol. 5, 910–916 (1998)

    Article  CAS  Google Scholar 

  23. Tarendeau, F. et al. Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit. PLoS Pathog. 4, e1000136 (2008)

    Article  Google Scholar 

  24. Hagen, M., Chung, T. D., Butcher, J. A. & Krystal, M. Recombinant influenza virus polymerase: requirement of both 5′ and 3′ viral ends for endonuclease activity. J. Virol. 68, 1509–1515 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rao, P., Yuan, W. & Krug, R. M. Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis. EMBO J. 22, 1188–1198 (2003)

    Article  CAS  Google Scholar 

  26. Gabriel, G. et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc. Natl Acad. Sci. USA 102, 18590–18595 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Salomon, R. et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J. Exp. Med. 203, 689–697 (2006)

    Article  CAS  Google Scholar 

  28. Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357, 289–298 (2006)

    Article  CAS  Google Scholar 

  29. Saito, T., Owen, D. M., Jiang, F., Marcotrigiano, J. & Gale, M. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454, 523–527 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Baudin, F., Bach, C., Cusack, S. & Ruigrok, R. W. Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J. 13, 3158–3165 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the ESRF, EMBL and MRC-France for access to synchrotron facilities and the Partnership for Structural Biology for an integrated structural biology environment. The work was partially funded by the EU FLUPOL contract (SP5B-CT-2007-044263) and the ANR FLU INTERPOL contract (ANR-06-MIME-014-02). A.D. has a PhD fellowship from the MENRT. We thank J.-L. Decout for advice about the inhibitor, E. Kowalinski and C. Swale for RNA transcripts, and C. Petosa and J. Perona for a critical reading of the manuscript.

Author Contributions A.D., D.B., T.C. and A.A.M. performed the experiments, D.J.H. and F.B. supervised the search for a soluble fragment of PA, R.W.H.R. and S.C. supervised the biochemical characterization of PA-Nter, and S.C. supervised the crystallography. S.C. wrote the paper with the help of A.D., D.B., T.C. and R.W.H.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Cusack.

Ethics declarations

Competing interests

Patent application in progress.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 with Legends, Supplementary Table 1, Supplementary Methods and Supplementary References. (PDF 1232 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, A., Bouvier, D., Crépin, T. et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458, 914–918 (2009). https://doi.org/10.1038/nature07745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07745

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing