Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RAD6RAD18RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light

Abstract

In nature, organisms are exposed to chronic low-dose ultraviolet light (CLUV) as opposed to the acute high doses common to laboratory experiments. Analysis of the cellular response to acute high-dose exposure has delineated the importance of direct DNA repair by the nucleotide excision repair pathway1 and for checkpoint-induced cell cycle arrest in promoting cell survival2. Here we examine the response of yeast cells to CLUV and identify a key role for the RAD6–RAD18–RAD5 error-free postreplication repair (RAD6 error-free PRR) pathway3,4 in promoting cell growth and survival. We show that loss of the RAD6 error-free PRR pathway results in DNA-damage-checkpoint-induced G2 arrest in CLUV-exposed cells, whereas wild-type and nucleotide-excision-repair-deficient cells are largely unaffected. Cell cycle arrest in the absence of the RAD6 error-free PRR pathway was not caused by a repair defect or by the accumulation of ultraviolet-induced photoproducts. Notably, we observed increased replication protein A (RPA)– and Rad52–yellow fluorescent protein foci5 in the CLUV-exposed rad18Δ cells and demonstrated that Rad52-mediated homologous recombination is required for the viability of the rad18Δ cells after release from CLUV-induced G2 arrest. These and other data presented suggest that, in response to environmental levels of ultraviolet exposure, the RAD6 error-free PRR pathway promotes replication of damaged templates without the generation of extensive single-stranded DNA regions. Thus, the error-free PRR pathway is specifically important during chronic low-dose ultraviolet exposure to prevent counter-productive DNA checkpoint activation and allow cells to proliferate normally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of the RAD6 pathway in tolerance to CLUV exposure.
Figure 2: CLUV-induced G2 arrest in rad18 Δ cells.
Figure 3: DNA damage checkpoint activation in CLUV-exposed rad18 Δ cells.
Figure 4: CLUV-induced DNA damage in RAD6 error-free-PRR-deficient cells.

Similar content being viewed by others

References

  1. Shuck, S. C., Short, E. A. & Turchi, J. J. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res. 18, 64–72 (2008)

    Article  CAS  Google Scholar 

  2. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Ulrich, H. D. The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. ChemBioChem 6, 1735–1743 (2005)

    Article  CAS  Google Scholar 

  4. Andersen, P. L., Xu, F. & Xiao, W. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res. 18, 162–173 (2008)

    Article  CAS  Google Scholar 

  5. Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004)

    Article  CAS  Google Scholar 

  6. Friedberg, E. C. How nucleotide excision repair protects against cancer. Nature Rev. Cancer 1, 22–33 (2001)

    Article  CAS  Google Scholar 

  7. Prakash, S., Sung, P. & Prakash, L. DNA repair genes and proteins of Saccharomyces cerevisiae . Annu. Rev. Genet. 27, 33–70 (1993)

    Article  CAS  Google Scholar 

  8. Harm, W. Biological determination of the germicidal activity of sunlight. Radiat. Res. 40, 63–69 (1969)

    Article  ADS  CAS  Google Scholar 

  9. Callegari, A. J. & Kelly, T. J. UV irradiation induces a postreplication DNA damage checkpoint. Proc. Natl Acad. Sci. USA 103, 15877–15882 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Friedberg, E. C. et al. DNA repair: from molecular mechanism to human disease. DNA Repair (Amst.) 5, 986–996 (2006)

    Article  CAS  Google Scholar 

  12. Giavara, S. et al. Yeast Nhp6A/B and mammalian Hmgb1 facilitate the maintenance of genome stability. Curr. Biol. 15, 68–72 (2005)

    Article  CAS  Google Scholar 

  13. Prakash, S., Johnson, R. E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317–353 (2005)

    Article  CAS  Google Scholar 

  14. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Zhang, H. & Lawrence, C. W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc. Natl Acad. Sci. USA 102, 15954–15959 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Blastyak, A. et al. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 28, 167–175 (2007)

    Article  CAS  Google Scholar 

  18. Zou, L. & Stillman, B. Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science 280, 593–596 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Foiani, M. et al. DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae . Mutat. Res. 451, 187–196 (2000)

    Article  CAS  Google Scholar 

  20. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Paciotti, V., Clerici, M., Lucchini, G. & Longhese, M. P. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev. 14, 2046–2059 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun, Z., Hsiao, J., Fay, D. S. & Stern, D. F. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272–274 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Rupp, W. D. & Howard-Flanders, P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31, 291–304 (1968)

    Article  CAS  Google Scholar 

  24. Prakash, L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol. Gen. Genet. 184, 471–478 (1981)

    Article  CAS  Google Scholar 

  25. Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006)

    Article  CAS  Google Scholar 

  26. Fanning, E., Klimovich, V. & Nager, A. R. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res. 34, 4126–4137 (2006)

    Article  CAS  Google Scholar 

  27. Gangavarapu, V., Prakash, S. & Prakash, L. Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae . Mol. Cell. Biol. 27, 7758–7764 (2007)

    Article  CAS  Google Scholar 

  28. Heller, R. C. & Marians, K. J. Replisome assembly and the direct restart of stalled replication forks. Nature Rev. Mol. Cell Biol. 7, 932–943 (2006)

    Article  CAS  Google Scholar 

  29. Hishida, T., Ohno, T., Iwasaki, H. & Shinagawa, H. Saccharomyces cerevisiae MGS1 is essential in strains deficient in the RAD6-dependent DNA damage tolerance pathway. EMBO J. 21, 2019–2029 (2002)

    Article  CAS  Google Scholar 

  30. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae . Yeast 14, 953–961 (1998)

    Article  CAS  Google Scholar 

  31. Hishida, T., Ohya, T., Kubota, Y., Kamada, Y. & Shinagawa, H. Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance. Mol. Cell. Biol. 26, 5509–5517 (2006)

    Article  CAS  Google Scholar 

  32. Pellicioli, A. et al. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J. 18, 6561–6572 (1999)

    Article  CAS  Google Scholar 

  33. Schepers, A. & Diffley, J. F. Mutational analysis of conserved sequence motifs in the budding yeast Cdc6 protein. J. Mol. Biol. 308, 597–608 (2001)

    Article  CAS  Google Scholar 

  34. Kamimura, Y., Tak, Y. S., Sugino, A. & Araki, H. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae . EMBO J. 20, 2097–2107 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Rothstein and H. Araki for strains; T. Matsunaga for anti-thymine dimer monoclonal antibody (designated TDM2 antibody); and T. Ohya for technical assistance. This work was supported by the Sumitomo foundation, by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by the MRC (UK) grant G0600233.

Author Contributions T.H. designed the study. T.H. and Y.K. performed the experiments. H.I. coordinated the study. T.H., H.I. and A.M.C. analysed data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Hishida.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3, Supplementary References and Supplementary Figures 1-10 with Legends. (PDF 2487 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hishida, T., Kubota, Y., Carr, A. et al. RAD6RAD18RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature 457, 612–615 (2009). https://doi.org/10.1038/nature07580

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07580

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing