Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biologically inspired oxidation catalysis

Abstract

The development of processes for selective hydrocarbon oxidation is a goal that has long been pursued. An additional challenge is to make such processes environmentally friendly, for example by using non-toxic reagents and energy-efficient catalytic methods. Excellent examples are naturally occurring iron- or copper-containing metalloenzymes, and extensive studies have revealed the key chemical principles that underlie their efficacy as catalysts for aerobic oxidations. Important inroads have been made in applying this knowledge to the development of synthetic catalysts that model enzyme function. Such biologically inspired hydrocarbon oxidation catalysts hold great promise for wide-ranging synthetic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metallo-oxygenase mechanisms.
Figure 2: Metalloenzyme intermediates.
Figure 3: Galactose oxidase mechanism.
Figure 4: Ligands for modelling GAO.
Figure 5: Copper–TEMPO radical oxidation.
Figure 6: Proposed mechanism for alcohol oxidation.
Figure 7: Oxidations by dicopper complexes.
Figure 8: Ligands used for iron- and manganese-catalysed oxidations.
Figure 9: Mechanisms of oxidations by iron catalysts.
Figure 10: Illustrative selective oxidations by iron.

Similar content being viewed by others

References

  1. Arakawa, H. et al. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101, 953–996 (2001).

    CAS  Google Scholar 

  2. Punniyamurthy, T., Velusamy, S. & Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev. 105, 2329–2364 (2005).

    CAS  PubMed  Google Scholar 

  3. Conley, B. L. et al. in Activation of Small Molecules: Organometallic and Bioinorganic Perspectives (ed. Tolman, W. B.) 235–285 (Wiley-VCH, 2006).

    Google Scholar 

  4. Meunier, B. (ed.) Biomimetic Oxidations Catalyzed by Transition Metal Complexes (Imperial College Press, 2000).

    Google Scholar 

  5. Mahadevan, V., Klein Gebbink, R. J. M. & Stack, T. D. P. Biomimetic modeling of copper oxidase reactivity. Curr. Opin. Chem. Biol. 4, 228–234 (2000).

    CAS  PubMed  Google Scholar 

  6. Sheldon, R. A., Arends, I. & Hanefeld, U. Green Chemistry and Catalysis (Wiley-VCH, 2007).

    Google Scholar 

  7. Denisov, I. G., Makris, T. M., Sligar, S. G. & Schlichting, I. Structure and chemistry of cytochrome P450. Chem. Rev. 105, 2253–2278 (2005).

    CAS  PubMed  Google Scholar 

  8. Dawson, J. H. Probing structure–function relations in heme-containing oxygenases and peroxidases. Science 240, 433–439 (1988).

    ADS  CAS  Google Scholar 

  9. Que, L. The heme paradigm revisited: alternative reaction pathways considered. J. Biol. Inorg. Chem. 9, 643–690 (2004).

    CAS  PubMed  Google Scholar 

  10. Merkx, M. et al. Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew. Chem. Int. Edn Engl. 40, 2782–2807 (2001).

    CAS  Google Scholar 

  11. Beauvais, L. G. & Lippard, S. J. Reactions of the peroxo intermediate of soluble methane monooxygenase hydroxylase with ethers. J. Am. Chem. Soc. 127, 7370–7378 (2005).

    CAS  PubMed  Google Scholar 

  12. Wallar, B. J. & Lipscomb, J. D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 96, 2625–2658 (1996).

    CAS  PubMed  Google Scholar 

  13. Shu, L. et al. An Fe2 IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275, 515–518 (1997).

    CAS  PubMed  Google Scholar 

  14. Ferraro, D. J., Gakhar, L. & Ramaswamy, S. Rieske business: structure–function of Rieske non-heme oxygenases. Biochem. Biophys. Res. Commun. 338, 175–190 (2005).

    CAS  PubMed  Google Scholar 

  15. Karlsson, A. et al. Side-on binding of dioxygen to iron: implications for enzymatic cis-dihydroxylation reactions. Science 299, 1039–1042 (2003).

    ADS  CAS  PubMed  Google Scholar 

  16. Krebs, C., Galonic Fujimori, D., Walsh, C. T. & Bollinger, J. M. Jr. Non-heme Fe(iv)–oxo intermediates. Acc. Chem. Res. 40, 484–492 (2007).

    CAS  PubMed  Google Scholar 

  17. Solomon, E. I., Chen, P., Metz, M., Lee, S.-K. & Palmer, A. E. Oxygen binding, activation, and reduction to water by copper proteins. Angew. Chem. Int. Edn Engl. 40, 4570–4590 (2001).

    CAS  Google Scholar 

  18. Whittaker, J. W. Free radical catalysis by galactose oxidase. Chem. Rev. 103, 2347–2363 (2003).

    CAS  PubMed  Google Scholar 

  19. Whittaker, J. W. The radical chemistry of galactose oxidase. Arch. Biochem. Biophys. 433, 227–239 (2005).

    CAS  PubMed  Google Scholar 

  20. Ito, N. et al. Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase. Nature 350, 87–90 (1991).

    ADS  CAS  PubMed  Google Scholar 

  21. Rogers, M. S. et al. The stacking tryptophan of galactose oxidase: a second-coordination sphere residue that has profound effects on tyrosyl radical behavior and enzyme catalysis. Biochemistry 46, 4606–4618 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jazdzewski, B. A. & Tolman, W. B. Understanding the copper-phenoxyl radical array in galactose oxidase: contributions from synthetic modeling studies. Coord. Chem. Rev. 200202, 633–685 (2000).

  23. Fabrice, T. Ten years of a biomimetic approach to the copper(ii) radical site of galactose oxidase. Eur. J. Inorg. Chem. 2007, 2379–2404 (2007).

    Google Scholar 

  24. Rokhsana, D., Dooley, D. M. & Szilagyi, R. K. Systematic development of computational models for the catalytic site in galactose oxidase: impact of outer-sphere residues on the geometric and electronic structures. J. Biol. Inorg. Chem. 13, 371–383 (2008).

    CAS  PubMed  Google Scholar 

  25. Whittaker, M. M. & Whittaker, J. W. Catalytic reaction profile for alcohol oxidation by galactose oxidase. Biochemistry 40, 7140–7148 (2001).

    CAS  PubMed  Google Scholar 

  26. Magnus, K. A., Ton-That, H. & Carpenter, J. E. Recent structural work on the oxygen transport protein hemocyanin. Chem. Rev. 94, 727–735 (1994).

    CAS  Google Scholar 

  27. Cuff, M. E., Miller, K. I., van Holde, K. E. & Hendrickson, W. A. Crystal structure of a functional unit from octopus hemocyanin. J. Mol. Biol. 278, 855–870 (1998).

    CAS  PubMed  Google Scholar 

  28. Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H. & Sugiyama, M. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281, 8981–8990 (2006).

    CAS  PubMed  Google Scholar 

  29. Rompel, A. et al. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities of tyrosinase and hemocyanin. J. Biol. Inorg. Chem. 4, 56–63 (1999).

    CAS  PubMed  Google Scholar 

  30. Granata, A., Monzani, E., Bubacco, L. & Casella, L. Mechanistic insight into the activity of tyrosinase from variable-temperature studies in an aqueous/organic solvent. Chem. Eur. J. 12, 2504–2514 (2006).

    CAS  PubMed  Google Scholar 

  31. Yamazaki, S. & Itoh, S. Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system. J. Am. Chem. Soc. 125, 13034–13035 (2003).

    CAS  PubMed  Google Scholar 

  32. Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. Structure and spectroscopy of copper-dioxygen complexes. Chem. Rev. 104, 1013–1045 (2004).

    CAS  PubMed  Google Scholar 

  33. Lewis, E. A. & Tolman, W. B. Reactivity of copper-dioxygen systems. Chem. Rev. 104, 1047–1076 (2004).

    CAS  PubMed  Google Scholar 

  34. Hatcher, L. Q. & Karlin, K. D. Ligand influences in copper-dioxygen complex-formation and substrate oxidations. Adv. Inorg. Chem. 58, 131–184 (2006).

    CAS  Google Scholar 

  35. Mirica, L. M. et al. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism. Science 308, 1890–1892 (2005).

    ADS  CAS  PubMed  Google Scholar 

  36. Brazeau, B. J., Johnson, B. J. & Wilmot, C. M. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Arch. Biochem. Biophys. 428, 22–31 (2004).

    CAS  PubMed  Google Scholar 

  37. Klinman, J. P. The copper-enzyme family of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J. Biol. Chem. 281, 3013–3016 (2006).

    CAS  PubMed  Google Scholar 

  38. Evans, J. P., Ahn, K. & Klinman, J. P. Evidence that dioxygen and substrate activation are tightly coupled in dopamine β-monooxygenase: implications for the reactive oxygen species. J. Biol. Chem. 278, 49691–49698 (2003).

    CAS  PubMed  Google Scholar 

  39. Chen, P. & Solomon, E. I. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine α-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. J. Am. Chem. Soc. 126, 4991–5000 (2004).

    CAS  PubMed  Google Scholar 

  40. Cramer, C. J. & Tolman, W. B. Mononuclear CuO2 complexes: geometries, spectroscopic properties, electronic structures, and reactivity. Acc. Chem. Res. 40, 601–608 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Prigge, S. T., Eipper, B. A., Mains, R. E. & Amzel, L. M. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304, 864–867 (2004).

    ADS  CAS  PubMed  Google Scholar 

  42. Yoshizawa, K., Kihara, N., Kamachi, T. & Shiota, Y. Catalytic mechanism of dopamine β-monooxygenase mediated by Cu(iii)-oxo. Inorg. Chem. 45, 3034–3041 (2006).

    CAS  PubMed  Google Scholar 

  43. Crespo, A., Marti, M. A., Roitberg, A. E., Amzel, L. M. & Estrin, D. A. The catalytic mechanism of peptidylglycine α-hydroxylating monooxygenase investigated by computer simulation. J. Am. Chem. Soc. 128, 12817–12828 (2006).

    CAS  PubMed  Google Scholar 

  44. Rolff, M. & Tuczek, F. How do copper enzymes hydroxylate aliphatic substrates? Recent insights from the chemistry of model systems. Angew. Chem. Int. Edn Engl. 47, 2344–2347 (2008).

    CAS  Google Scholar 

  45. Punniyamurthy, T. & Rout, L. Recent advances in copper-catalyzed oxidation of organic compounds. Coord. Chem. Rev. 252, 134–154 (2008).

    CAS  Google Scholar 

  46. Arends, I., Gamez, P. & Sheldon, R. A. Green oxidation of alcohols using biomimetic Cu complexes and Cu enzymes as catalysts. Adv. Inorg. Chem. 58, 235–279 (2006). This review surveys progress in the use of biologically inspired copper-ligand radical complexes as alcohol oxidation catalysts.

    CAS  Google Scholar 

  47. Piera, J. & Bä ckvall, J. E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer — a biomimetic approach. Angew. Chem. Int. Edn Engl. 47, 3506–3523 (2008). This topical review on biologically inspired oxidation catalysis emphasizes systems that use electron-transfer mediators to couple reduction and oxidation steps in biomimetic catalytic cycles.

    CAS  Google Scholar 

  48. Wang, Y. & Stack, T. D. P. Galactose oxidase model complexes: catalytic reactivities. J. Am. Chem. Soc. 118, 13097–13098 (1996).

    CAS  Google Scholar 

  49. Wang, Y., DuBois, J. L., Hedman, B., Hodgson, K. O. & Stack, T. D. P. Catalytic galactose oxidase models: biomimetic Cu(ii)-phenoxyl-radical reactivity. Science 279, 537–540 (1998).

    ADS  CAS  PubMed  Google Scholar 

  50. Chaudhuri, P. et al. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes. J. Biol. Chem. 386, 1023–1033 (2005).

    CAS  Google Scholar 

  51. Chaudhuri, P., Hess, H., Flörke, U. & Wieghardt, K. From structural models of galactose oxidase to homogeneous catalysis: efficient aerobic oxidation of alcohols. Angew. Chem. Int. Edn Engl. 37, 2217–2220 (1998).

    CAS  Google Scholar 

  52. Chaudhuri, P., Hess, M., Weyhermüller, T. & Wieghardt, K. Aerobic oxidation of primary alcohols by a new mononuclear Cu(ii)-radical catalyst. Angew. Chem. Int. Edn Engl. 38, 1095–1098 (1999).

    CAS  Google Scholar 

  53. Chaudhuri, P. et al. Aerobic oxidation of primary alcohols (including methanol) by copper(ii)- and zinc(ii)-phenoxyl radical catalysts. J. Am. Chem. Soc. 121, 9599–9610 (1999).

    CAS  Google Scholar 

  54. Paine, T. K., Weyhermüller, T., Wieghardt, K. & Chaudhuri, P. Aerial oxidation of primary alcohols and amines catalyzed by Cu(ii) complexes of 2,2'-selenobis(4,6-di-tert-butylphenol) providing [O,Se,O]-donor atoms. Dalton Trans. 2092–2101 (2004).

  55. Sheldon, R. & Arends, I. Catalytic oxidations mediated by metal ions and nitroxyl radicals. J. Mol. Catal. A 251, 200–214 (2006).

    CAS  Google Scholar 

  56. Jiang, N. & Ragauskas, A. J. Copper(ii)-catalyzed aerobic oxidation of primary alcohols to aldehydes in ionic liquid [bmpy]PF6 . Org. Lett. 7, 3689–3692 (2005).

    CAS  PubMed  Google Scholar 

  57. Ragagnin, G., Betzemeier, B., Quici, S. & Knochel, P. Copper-catalysed aerobic oxidation of alcohols using fluorous biphasic catalysis. Tetrahedron 58, 3985–3991 (2002).

    CAS  Google Scholar 

  58. Markó, I. E. et al. Efficient, ecologically benign, aerobic oxidation of alcohols. Adv. Inorg. Chem. 56, 211–240 (2004).

    Google Scholar 

  59. Markó, I. et al. Efficient, copper-catalyzed, aerobic oxidation of primary alcohols. Angew. Chem . Int. Edn Engl. 43, 1588–1591 (2004).

    Google Scholar 

  60. Battaini, G., Granata, A., Monzani, E., Gullotti, M. & Casella, L. Biomimetic oxidations by dinuclear and trinuclear copper complexes. Adv. Inorg. Chem. 58, 185–233 (2006).

    CAS  Google Scholar 

  61. Koval, I. A., Gamez, P., Belle, C., Selmeczi, K. & Reedijk, J. Synthetic models of the active site of catechol oxidase: mechanistic studies. Chem. Soc. Rev. 35, 814–840 (2006). References 60 and 61 review the catalytic oxidations of phenols and catechols by synthetic models of the dicopper active sites of tyrosinase and catechol oxidase from a mechanistic perspective.

    CAS  PubMed  Google Scholar 

  62. Higashimura, H. et al. Highly regioselective oxidative polymerization of 4-phenoxyphenol to poly(1,4-phenylene oxide) catalyzed by tyrosinase model complexes. J. Am. Chem. Soc. 120, 8529–8530 (1998).

    CAS  Google Scholar 

  63. Higashimura, H. et al. 'Radical-controlled' oxidative polymerization of 4-phenoxyphenol by a tyrosinase model complex catalyst to poly(1,4-phenylene oxide). Macromolecules 33, 1986–1995 (2000).

    ADS  CAS  Google Scholar 

  64. Higashimura, H. et al. 'Radical-controlled' oxidative polymerization of o-cresol catalyzed by µ-η22-peroxo dicopper(ii) complex. Appl. Catal. A 194, 427–433 (2000).

    Google Scholar 

  65. Higashimura, H., Fujisawa, K., Kubota, M. & Kobayashi, S. 'Radical-controlled' oxidative polymerization of phenol: Comparison with that of 4-phenoxyphenol. J. Polym. Sci. Polym. Chem. 43, 1955–1962 (2005).

    CAS  Google Scholar 

  66. Shibasaki, Y., Suzuki, Y. & Ueda, M. Copper-catalyzed regio-controlled oxidative coupling polymerization of 2,5-dimethylphenol. Macromolecules 40, 5322–5325 (2007).

    ADS  CAS  Google Scholar 

  67. Andersson, K. K., Froland, W. A., Lee, S.-K. & Lipscomb, J. D. Dioxygen independent oxygenation of hydrocarbons by methane monooxygenase hydroxylase component. New J. Chem. 15, 411–415 (1991).

    CAS  Google Scholar 

  68. Wolfe, M. D. & Lipscomb, J. D. Hydrogen peroxide-coupled cis-diol formation catalyzed by naphthalene 1,2-dioxygenase. J. Biol. Chem. 278, 829–835 (2003).

    CAS  PubMed  Google Scholar 

  69. Fenton, H. J. H. Oxidation of tartaric acid in the presence of iron. J. Chem. Soc. 65, 889–910 (1894).

    Google Scholar 

  70. Meunier, B, Robert, A., Pratviel, G. & Bernadou, J. in The Porphyrin Handbook (eds Kadish, K. M., Smith, K. M. & Guilard, R.) 119–187 (Academic, 2000).

    Google Scholar 

  71. Nam, W. et al. Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and H2O2 in protic solvents. J. Org. Chem. 68, 7903–7906 (2007).

    Google Scholar 

  72. Srinivas, K. A., Kumar, A. & Chauhan, M. S. Epoxidation of alkenes with hydrogen peroxide catalyzed by iron(iii) porphyrins in ionic liquids. Chem. Commun. 2456–2457 (2002).

  73. Stephenson, N. A. & Bell, A. T. A study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron(iii) tetrakispentafluorophenyl porphyrin J. Am. Chem. Soc. 127, 8635–8643 (2005).

    CAS  PubMed  Google Scholar 

  74. Sono, M., Roach, M. P., Coulter, E. D. & Dawson, J. H. Heme-containing oxygenases. Chem. Rev. 96, 2841–2887 (1996).

    CAS  PubMed  Google Scholar 

  75. Abu-Omar, M. M., Loaiza, A. & Hontzeas, N. Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem. Rev. 105, 2227–2252 (2005).

    CAS  PubMed  Google Scholar 

  76. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Jr. Oxygen activation at mononuclear nonheme iron: Enzymes, intermediates, and models. Chem. Rev. 104, 939–986 (2004).

    CAS  PubMed  Google Scholar 

  77. Costas, M., Chen, K. & Que, L. Jr. Biomimetic nonheme iron catalysts for alkane hydroxylation. Coord. Chem. Rev. 200202, 517–544 (2000).

    Google Scholar 

  78. Lane, B. S. & Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 103, 2457–2474 (2003).

    CAS  PubMed  Google Scholar 

  79. Tanase, S. & Bouwman, E. Selective conversion of hydrocarbons with H2O2 using biomimetic non-heme iron and manganese oxidation catalysts. Adv. Inorg. Chem. 58, 29–75 (2006).

    CAS  Google Scholar 

  80. Chen, K., Costas, M. & Que, L. Jr. Spin state tuning of non-heme iron-catalyzed hydrocarbon oxidations: Participation of FeIII-OOH and FeV=O intermediates. Dalton Trans. 672–679 (2002).

  81. Chen, K. & Que, L. Jr. Stereospecific alkane hydroxylation by nonheme iron catalysts: Mechanistic evidence for an FeV=O active species. J. Am. Chem. Soc. 123, 6327–6337 (2001).

    CAS  PubMed  Google Scholar 

  82. Chen, K., Costas, M., Kim, J., Tipton, A. K. & Que, L. Jr. Olefin cis-dihydroxylation versus epoxidation by nonheme iron catalysts: two faces of an FeIII-OOH coin. J. Am. Chem. Soc. 124, 3026–3035 (2002). This paper summarizes the mechanistic arguments in favour of the formation of the Fe( v )=O species shown in Fig. 9 that are responsible for highly stereoselective alkene oxidations by H 2 O 2 that are catalysed by non-haem iron complexes.

    CAS  PubMed  Google Scholar 

  83. White, M. C., Doyle, A. G. & Jacobsen, E. N. A synthetically useful, self-assembling MMO mimic system for catalytic alkene epoxidation with aqueous H2O2 . J. Am. Chem. Soc. 123, 7194–7195 (2001).

    CAS  PubMed  Google Scholar 

  84. Ryu, J. Y. et al. High conversion of olefins to cis-diols by non-heme iron catalysts and H2O2 . Chem. Commun. 1288–1289 (2002).

  85. Mas-Ballesté, R. & Que, L. Jr. Iron-catalyzed olefin epoxidation in the presence of acetic acid: Insights into the nature of the metal-based oxidant J. Am. Chem. Soc. 129, 15964–15972 (2007).

    PubMed  Google Scholar 

  86. Mas-Ballesté, R., Fujita, M., Que, L. Jr. High-valent iron-mediated cis-hydroxyacetoxylation of olefins. Dalton Trans. 1828–1830 (2008).

  87. Taktak, S., Ye, W., Herrera, A. M. & Rybak-Akimova, E. V. Synthesis and catalytic properties in olefin epoxidation of novel iron(ii) complexes with pyridine-containing macrocycles bearing an aminopropyl pendant arm. Inorg. Chem. 46, 2929–2942 (2007).

    CAS  PubMed  Google Scholar 

  88. Chen, M. S. & White, M. C. A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007). This paper shows that the non-haem iron complex Fe (18) can generate an oxidant from H2O2 that selectively hydroxylates particular tertiary C-H bonds in complex organic molecules.

    ADS  CAS  PubMed  Google Scholar 

  89. Anilkumar, G., Bitterlich, B., Gelalcha, F. G., Tse, M. K. & Beller, M. An efficient biomimetic Fe-catalyzed epoxidation of olefins using hydrogen peroxide. Chem. Commun. 289–291 (2007).

  90. Gelalcha, F. G., Bitterlich, B., Anilkumar, A., Tse, M. K. & Beller, M. Iron-catalyzed asymmetric epoxidation of aromatic alkenes using hydrogen peroxide. Angew. Chem. Int. Edn Engl. 46, 7293–7296 (2007). This paper reports the highest enantioselectivity so far for the epoxidation of an alkene by a non-haem iron catalyst.

    CAS  Google Scholar 

  91. Suzuki, K., Oldenburg, P. D. & Que, L. Jr. Iron-catalyzed asymmetric olefin cis-dihydroxylation with 97% enantiomeric excess. Angew. Chem. Int. Edn Engl. 47, 1887–1889 (2008). This paper reports the highest enantioselectivity so far for the cis-dihydroxylation of an alkene by a non-haem iron catalyst.

    CAS  Google Scholar 

  92. Lane, B. S., Vogt, M., DeRose, V. J. & Burgess, K. Manganese-catalyzed epoxidations of alkenes in bicarbonate solutions. J. Am. Chem. Soc. 124, 11946–11954 (2002).

    CAS  PubMed  Google Scholar 

  93. de Boer, J. W. et al. cis-Dihydroxylation and epoxidation of alkenes by [Mn2O(RCO2)2(tmtacn)2]: Tailoring the selectivity of a highly H2O2-efficient catalyst. J. Am. Chem. Soc. 127, 7990–7991 (2005).

    CAS  PubMed  Google Scholar 

  94. de Boer, J. W. et al. Mechanism of cis-dihydroxylation and epoxidation of alkenes by highly H2O2 efficient dinuclear manganese catalysts. Inorg. Chem. 46, 6353–6372 (2007).

    CAS  PubMed  Google Scholar 

  95. Sorokin, A. B., Kudrik, E. V. & Bouchu, D. Bio-inspired oxidation of methane in water catalyzed by N-bridged diiron phthalocyanine complex. Chem. Commun. 2562–2564 (2008). This paper demonstrates the iron-catalysed oxidation of methane by H 2 O 2 at relatively mild temperatures (<100°C).

  96. Collins, T. J. TAML oxidant activators: A new approach to the activation of hydrogen peroxide for environmentally significant problems. Acc. Chem. Res. 35, 782–790 (2002). This review summarizes the work of Collins's group in the use of Fe(TAML) complexes as effective catalysts for H 2 O 2 activation in the treatment of waste water from paper and textile mills.

    CAS  PubMed  Google Scholar 

  97. Chanda, A. et al. (TAML)Feiv=O complex in aqueous solution: Synthesis and spectroscopic and computational characterization. Inorg. Chem. 47, 3669–3678 (2008).

    CAS  PubMed  Google Scholar 

  98. Tiago de Oliveira, F. et al. Chemical and spectroscopic evidence for an FeV-oxo complex. Science 315, 835–838 (2007).

    ADS  CAS  PubMed  Google Scholar 

  99. Balasubramanian, R. & Rosenzweig, A. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acc. Chem. Res. 40, 573–580 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on biologically inspired oxidation catalysis carried out in the laboratory of L.Q. is supported by the US Department of Energy, and support for copper oxidation chemistry in the laboratory of W.B.T. is provided by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the authors (larryque@umn.edu; wtolman@umn.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Que, L., Tolman, W. Biologically inspired oxidation catalysis. Nature 455, 333–340 (2008). https://doi.org/10.1038/nature07371

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07371

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing