Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Archimedean-like tiling on decagonal quasicrystalline surfaces

Abstract

Monolayers on crystalline surfaces often form complex structures with physical and chemical properties that differ strongly from those of their bulk phases1. Such hetero-epitactic overlayers are currently used in nanotechnology and understanding their growth mechanism is important for the development of new materials and devices. In comparison with crystals, quasicrystalline surfaces exhibit much larger structural and chemical complexity leading, for example, to unusual frictional2, catalytical3 or optical properties4,5. Deposition of thin films on such substrates can lead to structures that may have typical quasicrystalline properties. Recent experiments have indeed showed 5-fold symmetries in the diffraction pattern of metallic layers adsorbed on quasicrystals6,7. Here we report a real-space investigation of the phase behaviour of a colloidal monolayer interacting with a quasicrystalline decagonal substrate created by interfering five laser beams. We find a pseudomorphic phase that shows both crystalline and quasicrystalline structural properties. It can be described by an archimedean-like tiling8,9 consisting of alternating rows of square and triangular tiles. The calculated diffraction pattern of this phase is in agreement with recent observations of copper adsorbed on icosahedral Al70Pd21Mn9 surfaces10. In addition to establishing a link between archimedean tilings and quasicrystals, our experiments allow us to investigate in real space how single-element monolayers can form commensurate structures on quasicrystalline surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental realization of colloidal quasicrystals.
Figure 2: Real and reciprocal space structure of the adsorbate.
Figure 3: Substrate–adsorbate correlations.

Similar content being viewed by others

References

  1. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Park, J. Y. et al. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354–1356 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Tsai, A. P. & Yoshimura, M. Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl. Catal. A 214, 237–241 (2001)

    Article  CAS  Google Scholar 

  4. Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J. & Netti, M. C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Matsui, T., Agrawal, A., Nahata, A. & Vardeny, Z. V. Transmission resonances through aperiodic arrays of subwavelength apertures. Nature 446, 517–521 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Franke, K. J. et al. Quasicrystalline epitaxial single element monolayers on icosahedral Al-Pd-Mn and decagonal Al-Ni-Co quasicrystal surfaces. Phys. Rev. Lett. 89, 156104 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Sharma, H. R., Shimoda, M., Ross, A. R., Lograsso, T. A. & Tsai, A. P. Real-space observation of quasicrystalline Sn monolayer formed on the fivefold surface of icosahedral Al-Cu-Fe quasicrystal. Phys. Rev. B 72, 045428 (2005)

    Article  ADS  Google Scholar 

  8. Pearce, P. Structure in Nature is a Strategy for Design (MIT Press, Cambridge, MA, 1978)

    Google Scholar 

  9. David, S., Chelnokov, A. & Lourtioz, J. M. Isotropic photonic structures: Archimedean-like tilings and quasi-crystals. IEEE J. Quantum Electron. 37, 1427–1434 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Ledieu, J. et al. Copper adsorption on the fivefold Al70Pd21Mn9 quasicrystal surface. Phys. Rev. B 72, 035420 (2005)

    Article  ADS  Google Scholar 

  11. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  ADS  CAS  Google Scholar 

  12. Engel, M. & Trebin, H.-R. Self-assembly of monoatomic complex crystals and quasicrystals with a double-well interaction potential. Phys. Rev. Lett. 98, 225505 (2007)

    Article  ADS  Google Scholar 

  13. Keys, A. S. & Glotzer, S. C. How do quasicrystals grow? Phys. Rev. Lett. 99, 235503 (2007)

    Article  ADS  Google Scholar 

  14. Janot, C. Quasicrystals—A Primer (Oxford Univ. Press, New York, 1994)

    MATH  Google Scholar 

  15. Dubois, J. M. Quasicrystals. J. Phys. Condens. Matter 13, 7753–7762 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Fournee, V. et al. Nucleation and growth of Ag films on a quasicrystalline AlPdMn surface. Phys. Rev. B 67, 033406 (2003)

    Article  ADS  Google Scholar 

  17. Curtarolo, S., Setyawan, W., Ferralis, N., Diehl, R. D. & Cole, M. W. Evolution of topological order in Xe films on a quasicrystal surface. Phys. Rev. Lett. 95, 136104 (2005)

    Article  ADS  Google Scholar 

  18. Sharma, H. R., Shimoda, M. & Tsai, A. P. Quasicrystal surfaces: structure and growth of atomic overlayers. Adv. Phys. 56, 403–464 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl Acad. Sci. USA 94, 4853–4860 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Burns, M. M., Fournier, J. M. & Golovchenko, J. A. Optical matter—crystallization and binding in intense optical fields. Science 249, 749–754 (1990)

    Article  ADS  CAS  Google Scholar 

  21. Roichman, Y. & Grier, D. G. Holographic assembly of quasicrystalline photonic heterostructures. Opt. Express 13, 5434–5439 (2005)

    Article  ADS  Google Scholar 

  22. Bechinger, C., Brunner, M. & Leiderer, P. Phase behavior of two-dimensional colloidal systems in the presence of periodic light fields. Phys. Rev. Lett. 86, 930–933 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Yethiraj, A. Tunable colloids: control of colloidal phase transitions with tunable interactions. Soft Matter 3, 1099–1115 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Guinier, A. X-ray Diffraction—In Crystals, Imperfect Crystals and Amorphous Bodies (Dover, New York, 1994)

    Google Scholar 

  25. Bilki, B., Erbudak, M., Mungan, M. & Weisskopf, Y. Structure formation of a layer of adatoms on a quasicrystalline substrate: Molecular dynamics study. Phys. Rev. B 75, 045437 (2007)

    Article  ADS  Google Scholar 

  26. Ledieu, J. et al. Tiling of the fivefold surface of Al70Pd21Mn9 . Surf. Sci. 492, L729–L734 (2001)

    Article  CAS  Google Scholar 

  27. Yethiraj, A. Tunable colloids: control of colloidal phase transitions with tunable interactions. Soft Matter 3, 1099–1115 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Ledieu, J. et al. Pseudomorphic growth of a single element quasiperiodic ultrathin film on a quasicrystal substrate. Phys. Rev. Lett. 92, 135507 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Freedman, B., Lifshitz, R., Fleischer, J. W. & Segev, M. Phason dynamics in nonlinear photonic quasicrystals. Nature Mater. 6, 776–781 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Brunner, M., Bechinger, C., Strepp, W., Lobaskin, V. & v Grünberg, H. H. Density-dependent pair-interactions in 2D colloidal suspensions. Europhys. Lett. 58, 926–932 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Baumgartl, S. Rausch, H.-H. v. Grünberg, M. Schmiedeberg and H. Stark for technical support and helpful discussions. This work is financially supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Bechinger.

Supplementary information

Supplementary information

The file contains Supplementary Figure S1 with Legend. (PDF 199 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhael, J., Roth, J., Helden, L. et al. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454, 501–504 (2008). https://doi.org/10.1038/nature07074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07074

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing