Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart

Abstract

The heart is formed from cardiogenic progenitors expressing the transcription factors Nkx2-5 and Isl1 (refs 1 and 2). These multipotent progenitors give rise to cardiomyocyte, smooth muscle and endothelial cells, the major lineages of the mature heart3,4. Here we identify a novel cardiogenic precursor marked by expression of the transcription factor Wt1 and located within the epicardium—an epithelial sheet overlying the heart. During normal murine heart development, a subset of these Wt1+ precursors differentiated into fully functional cardiomyocytes. Wt1+ proepicardial cells arose from progenitors that express Nkx2-5 and Isl1, suggesting that they share a developmental origin with multipotent Nkx2-5+ and Isl1+ progenitors. These results identify Wt1+ epicardial cells as previously unrecognized cardiomyocyte progenitors, and lay the foundation for future efforts to harness the cardiogenic potential of these progenitors for cardiac regeneration and repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac Wt1 and Wt1-driven GFPCre expression.
Figure 2: Wt1 -derived cells differentiate into cardiomyocytes.
Figure 3: Wt1 -expressing epicardial cells differentiate into cardiomyocytes.
Figure 4: Proepicardium arises from Nkx2-5 + precursors.

Similar content being viewed by others

References

  1. Martin-Puig, S., Wang, Z. & Chien, K. R. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2, 320–331 (2008)

    Article  CAS  Google Scholar 

  2. Laugwitz, K. L., Moretti, A., Caron, L., Nakano, A. & Chien, K. R. Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135, 193–205 (2008)

    Article  CAS  Google Scholar 

  3. Moretti, A. et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006)

    Article  CAS  Google Scholar 

  4. Wu, S. M. et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127, 1137–1150 (2006)

    Article  CAS  Google Scholar 

  5. Manner, J., Perez-Pomares, J. M., Macias, D. & Munoz-Chapuli, R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs 169, 89–103 (2001)

    Article  CAS  Google Scholar 

  6. Wessels, A. & Perez-Pomares, J. M. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat. Rec. A 276, 43–57 (2004)

    Article  CAS  Google Scholar 

  7. Smart, N. et al. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177–182 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Wilm, B., Ipenberg, A., Hastie, N. D., Burch, J. B. & Bader, D. M. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132, 5317–5328 (2005)

    Article  CAS  Google Scholar 

  9. Merki, E. et al. Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation. Proc. Natl Acad. Sci. USA 102, 18455–18460 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Gittenberger-de Groot, A. C., Vrancken Peeters, M. P., Mentink, M. M., Gourdie, R. G. & Poelmann, R. E. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ. Res. 82, 1043–1052 (1998)

    Article  CAS  Google Scholar 

  11. Manner, J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail–chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 255, 212–226 (1999)

    Article  CAS  Google Scholar 

  12. Dettman, R. W., Denetclaw, W. J., Ordahl, C. P. & Bristow, J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol. 193, 169–181 (1998)

    Article  CAS  Google Scholar 

  13. Mikawa, T. & Gourdie, R. G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174, 221–232 (1996)

    Article  CAS  Google Scholar 

  14. Le, Y., Miller, J. L. & Sauer, B. GFPcre fusion vectors with enhanced expression. Anal. Biochem. 270, 334–336 (1999)

    Article  CAS  Google Scholar 

  15. Mao, X., Fujiwara, Y. & Orkin, S. H. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl Acad. Sci. USA 96, 5037–5042 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Vintersten, K. et al. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40, 241–246 (2004)

    Article  CAS  Google Scholar 

  17. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997)

    Article  CAS  Google Scholar 

  18. Stanley, E. G. et al. Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3′UTR-ires-Cre allele of the homeobox gene Nkx2–5. Int. J. Dev. Biol. 46, 431–439 (2002)

    CAS  PubMed  Google Scholar 

  19. Moses, K. A., DeMayo, F., Braun, R. M., Reecy, J. L. & Schwartz, R. J. Embryonic expression of an Nkx2–5/Cre gene using ROSA26 reporter mice. Genesis 31, 176–180 (2001)

    Article  CAS  Google Scholar 

  20. Rivera-Feliciano, J. et al. Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 133, 3607–3618 (2006)

    Article  CAS  Google Scholar 

  21. Heikinheimo, M., Scandrett, J. M. & Wilson, D. B. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev. Biol. 164, 361–373 (1994)

    Article  CAS  Google Scholar 

  22. Watt, A. J., Battle, M. A., Li, J. & Duncan, S. A. GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc. Natl Acad. Sci. USA 101, 12573–12578 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Qyang, Y. et al. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/β-Catenin Pathway. Cell Stem Cell 1, 165–179 (2007)

    Article  CAS  Google Scholar 

  24. Verzi, M. P., McCulley, D. J., De Val, S., Dodou, E. & Black, B. L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev. Biol. 287, 134–145 (2005)

    Article  CAS  Google Scholar 

  25. Kruithof, B. P. et al. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev. Biol. 295, 507–522 (2006)

    Article  CAS  Google Scholar 

  26. Laugwitz, K. L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Liu, P., Jenkins, N. A. & Copeland, N. G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003)

    Article  CAS  Google Scholar 

  28. Rodriguez, C. I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP . Nature Genet. 25, 139–140 (2000)

    Article  CAS  Google Scholar 

  29. Yang, L. et al. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133, 1575–1585 (2006)

    Article  CAS  Google Scholar 

  30. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

    Article  CAS  Google Scholar 

  31. Jiao, K. et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17, 2362–2367 (2003)

    Article  CAS  Google Scholar 

  32. Pu, W. T., Ma, Q. & Izumo, S. NFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro . Circ. Res. 92, 725–731 (2003)

    Article  CAS  Google Scholar 

  33. Brent, A. E., Schweitzer, R. & Tabin, C. J. A somitic compartment of tendon progenitors. Cell 113, 235–248 (2003)

    Article  CAS  Google Scholar 

  34. Zhou, B. et al. G-CSF-mobilized peripheral blood mononuclear cells from diabetic patients augment neovascularization in ischemic limbs but with impaired capability. J. Thromb. Haemost. 4, 993–1002 (2006)

    Article  CAS  Google Scholar 

  35. Gutstein, D. E., Liu, F. Y., Meyers, M. B., Choo, A. & Fishman, G. I. The organization of adherens junctions and desmosomes at the cardiac intercalated disc is independent of gap junctions. J. Cell Sci. 116, 875–885 (2003)

    Article  CAS  Google Scholar 

  36. Lobe, C. G. et al. Z/AP, a double reporter for Cre-mediated recombination. Dev. Biol. 208, 281–292 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Heart, Lung and Blood Institute of the National Institutes of Health, USA, the American Heart Association, and by a charitable donation from E. P. Marram and K. K. Carpenter. We thank the Schwartz, Harvey, Schneider, Yanagisawa, Evans, Soriano, Orkin and Nagy laboratories for contributing mouse strains used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Pu.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 with Legends and Supplementary Table 1. (PDF 4602 kb)

Supplementary Movie 1

This file contains Supplementary Movie 1 showing spontaneous contraction in Wt1GFPCre/+; Z/Red cells. (MOV 554 kb)

Supplementary Movie 2

This file contains Supplementary Movie 2 showing calcium transients in a Wt1GFPCre/+; Z/Red cell, loaded with the calcium-sensitive indicator Fluo-4 AM. (MOV 1147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Ma, Q., Rajagopal, S. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008). https://doi.org/10.1038/nature07060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07060

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing