Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sex ratio adjustment and kin discrimination in malaria parasites

Abstract

Malaria parasites and related Apicomplexans are the causative agents of the some of the most serious infectious diseases of humans, companion animals, livestock and wildlife. These parasites must undergo sexual reproduction to transmit from vertebrate hosts to vectors, and their sex ratios are consistently female-biased. Sex allocation theory, a cornerstone of evolutionary biology, is remarkably successful at explaining female-biased sex ratios in multicellular taxa, but has proved controversial when applied to malaria parasites. Here we show that, as predicted by theory, sex ratio is an important fitness-determining trait and Plasmodium chabaudi parasites adjust their sex allocation in response to the presence of unrelated conspecifics. This suggests that P. chabaudi parasites use kin discrimination to evaluate the genetic diversity of their infections, and they adjust their behaviour in response to environmental cues. Malaria parasites provide a novel way to test evolutionary theory, and support the generality and power of a darwinian approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fitness consequences of sex ratio variation.
Figure 2: Genetic variation in patterns of sex allocation.
Figure 3: Explaining sex ratio variation throughout infections.
Figure 4: Sex ratio varies with the genetic diversity of P. chabaudi infections.
Figure 5: Sex ratios of focal genotypes during the growth phase of infections.
Figure 6: Sex ratios of focal genotypes during the post-peak phase of infections.

Similar content being viewed by others

References

  1. Charnov, E. L. The Theory of Sex Allocation (Princeton Univ. Press, Princeton, 1982)

    Google Scholar 

  2. Frank, S. A. Sex allocation theory for birds and mammals. Annu. Rev. Ecol. Syst. 21, 13–55 (1990)

    Article  Google Scholar 

  3. Frank, S. A. A touchstone in the study of adaptation. Evolution Int. J. Org. Evolution 56, 2561–2564 (2002)

    Google Scholar 

  4. Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967)

    Article  CAS  ADS  Google Scholar 

  5. Hardy, I. C. W. Sex Ratios: Concepts and Research Methods (Cambridge Univ. Press, Cambridge, UK, 2002)

    Book  Google Scholar 

  6. Ferguson, D. J. P. Toxoplasma gondii and sex: Essential or optional extra. Trends Parasitol. 18, 355–359 (2002)

    PubMed  Google Scholar 

  7. Ferguson, D. J. P. More on Toxoplasma gondii, sex and premature rejection. Trends Parasitol. 19, 157–158 (2003)

    Article  Google Scholar 

  8. Paul, R. E. L., Ariey, F. & Robert, V. The evolutionary ecology of Plasmodium. Ecol. Lett. 6, 866–880 (2003)

    Article  Google Scholar 

  9. Shutler, D., Bennett, G. F. & Mullie, A. Sex proportions of Haemoproteus blood parasites and local mate competition. Proc. Natl Acad. Sci. USA 92, 6748–6752 (1995)

    Article  CAS  ADS  Google Scholar 

  10. West, S. A., Reece, S. E. & Read, A. F. Toxoplasma gondii, sex and premature rejection. Trends Parasitol. 19, 155–157 (2003)

    Article  Google Scholar 

  11. Reece, S. E., Duncan, A. B., West, S. A. & Read, A. F. Host cell preference and variable transmission strategies in malaria parasites. Proc. R. Soc. Lond. B 272, 511–517 (2005)

    Article  Google Scholar 

  12. Robert, V. et al. Sex ratio of Plasmodium falciparum gametocytes in inhabitants of Dielmo, Senegal. Parasitology 127, 1–8 (2003)

    Article  CAS  Google Scholar 

  13. Paul, R. E. L., Coulson, T. N., Raibaud, A. & Brey, P. T. Sex determination in malaria parasites. Science 287, 128–131 (2000)

    Article  CAS  ADS  Google Scholar 

  14. Paul, R. E. L., Raibaud, A. & Brey, P. T. Sex ratio adjustment in Plasmodium gallinaceum. Parassitologia 41, 153–158 (1999)

    CAS  PubMed  Google Scholar 

  15. Osgood, S. M., Eisen, R. J. & Schall, J. J. Gametocyte sex ratio of a malaria parasite: Experimental test of heritability. J. Parasitol. 88, 494–498 (2002)

    Article  Google Scholar 

  16. Dye, C. & Godfray, H. C. F. On sex ratio and inbreeding in malaria parasite populations. J. Theor. Biol. 161, 131–134 (1993)

    Article  CAS  Google Scholar 

  17. Nee, S., West, S. A. & Read, A. F. Inbreeding and parasite sex ratios. Proc. R. Soc. Lond. B 269, 755–760 (2002)

    Article  Google Scholar 

  18. Read, A. F., Anwar, M., Shutler, D. & Nee, S. Sex allocation and population-structure in malaria and related parasitic protozoa. Proc. R. Soc. Lond. B 260, 359–363 (1995)

    Article  CAS  ADS  Google Scholar 

  19. West, S. A., Smith, T. G. & Read, A. F. Sex allocation and population structure in apicomplexan (protozoa) parasites. Proc. R. Soc. Lond. B 267, 257–263 (2000)

    Article  CAS  Google Scholar 

  20. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, Oxford, UK, 1930)

    Book  Google Scholar 

  21. West, S. A., Shuker, D. M. & Sheldon, B. C. Sex-ratio adjustment when relatives interact: A test of constraints on adaptation. Evolution Int. J. Org. Evolution 59, 1211–1228 (2005)

    Article  Google Scholar 

  22. Paul, R. E. L. et al. Mating patterns in malaria parasite populations of Papua New Guinea. Science 269, 1709–1711 (1995)

    Article  CAS  ADS  Google Scholar 

  23. Conway, D. J. et al. High recombination rate in natural populations of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 4506–4511 (1999)

    Article  CAS  ADS  Google Scholar 

  24. Walliker, D., Babiker, H. A. & Ranford-Cartwright, L. C. in Malaria: Parasite Biology, Pathogenesis and Protection (ed. Sherman, I.) 235–252 (ASM, Washington DC, 1998)

    Google Scholar 

  25. Read, A. F. et al. Gametocyte sex-ratios as indirect measures of outcrossing rates in malaria. Parasitology 104, 387–395 (1992)

    Article  Google Scholar 

  26. West, S. A., Reece, S. E. & Read, A. F. Evolution of gametocyte sex ratios in malaria and related Apicomplexan (protozoan) parasites. Trends Parasitol. 17, 525–531 (2001)

    Article  CAS  Google Scholar 

  27. Read, A. F., Smith, T. G., Nee, S. & West, S. A. in Sex Ratio Handbook (ed. Hardy, I. C. W.) 314–332 (Cambridge Univ. Press, Cambridge, UK, 2002)

    Book  Google Scholar 

  28. Robert, V. et al. Malaria transmission in urban Sub-Saharan Africa. Am. J. Trop. Med. Hyg. 68, 169–176 (2003)

    Article  Google Scholar 

  29. Robert, V. et al. Effect of gametocyte sex ratio on infectivity of Plasmodium falciparum to Anopheles gambiae. Trans. R. Soc. Trop. Med. Hyg. 90, 621–624 (1996)

    Article  CAS  Google Scholar 

  30. Schall, J. J. Transmission success of the malaria parasite Plasmodium mexicanum into its vector: Role of gametocyte density and sex ratio. Parasitology 121, 575–580 (2000)

    Article  Google Scholar 

  31. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nature Rev. Microbiol. 4, 597–607 (2006)

    Article  CAS  Google Scholar 

  32. Gardner, A., Reece, S. E. & West, S. A. Even more extreme fertility insurance and the sex ratios of protozoan blood parasites. J. Theor. Biol. 223, 515–521 (2003)

    Article  CAS  Google Scholar 

  33. West, S. A., Smith, T. G., Nee, S. & Read, A. F. Fertility insurance and the sex ratios of malaria and related hemospororin blood parasites. J. Parasitol. 88, 258–263 (2002)

    Article  Google Scholar 

  34. Pickering, J., Read, A. F., Guerrero, S. & West, S. A. Sex ratio and virulence in two species of lizard malaria parasites. Evol. Ecol. Res.2 171–184 (2000)

  35. Reece, S. E. & Read, A. F. Malaria sex ratios. Trends Ecol. Evol. 15, 259–260 (2000)

    Article  CAS  Google Scholar 

  36. van Dijk, M. R. et al. A central role for p48/45 in malaria parasite male gamete fertility. Cell 104, 153–164 (2001)

    Article  CAS  Google Scholar 

  37. Khan, S. M. et al. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121, 675–687 (2005)

    Article  CAS  Google Scholar 

  38. Janse, C. J. et al. In vitro formation of ookinetes and functional maturity of Plasmodium-berghei gametocytes. Parasitology 91, 19–29 (1985)

    Article  Google Scholar 

  39. Drew, D. R. & Reece, S. E. Development of reverse-transcription PCR techniques to analyse the density and sex ratio of gametocytes in genetically diverse Plasmodium chabaudi infections. Mol. Biochem. Parasitol. 156, 199–209 (2007)

    Article  CAS  Google Scholar 

  40. Werren, J. H. Sex ratio adaptations to local mate competition in a parasitic wasp. Science 208, 1157–1159 (1980)

    Article  CAS  ADS  Google Scholar 

  41. Mackinnon, M. J. & Read, A. F. Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution Int. J. Org. Evolution 53, 689–703 (1999)

    Article  Google Scholar 

  42. Razakandrainibe, F. G. et al. “Clonal” population structure of the malaria agent Plasmodium falciparum in high-infection regions. Proc. Natl Acad. Sci. USA 102, 17388–17393 (2005)

    Article  CAS  ADS  Google Scholar 

  43. Nesse, R. M. & Williams, G. C. Why We Get Sick: The New Science of Darwinian Medicine (Times Books, New York, 1995)

    Google Scholar 

  44. Mehdiabadi, N. J. et al. Kin preference in a social microbe. Nature 442, 881–882 (2006)

    Article  CAS  ADS  Google Scholar 

  45. Crozier, R. H. Genetic clonal recognition abilities in marine-invertebrates must be maintained by selection for something else. Evolution Int. J. Org. Evolution 40, 1100–1101 (1986)

    Article  CAS  Google Scholar 

  46. Frank, S. A. A kin selection model for the evolution of virulence. Proc. R. Soc. Lond. B 250, 195–197 (1992)

    Article  CAS  ADS  Google Scholar 

  47. Frank, S. A. Kin selection and virulence in the evolution of protocells and parasites. Proc. R. Soc. Lond. B 258, 153–161 (1994)

    Article  CAS  ADS  Google Scholar 

  48. Herre, E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 1442–1445 (1993)

    Article  CAS  ADS  Google Scholar 

  49. Al-Olayan, E. M., Williams, G. T. & Hurd, H. Apoptosis in the malaria protozoan, Plasmodium berghei: A possible mechanism for limiting intensity of infection in the mosquito. Int. J. Parasitol. 32, 1133–1143 (2002)

    Article  CAS  Google Scholar 

  50. Rousset, F. & Roze, D. Constraints on the origin and maintenance of genetic kin recognition. Evolution Int. J. Org. Evolution 61, 2320–2330 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. P. Waters, C. Janse and M. R. van Dijk for the genetically modified parasites, and D. H. Nussey, S. A. West, A. F. Read and A. Buckling for discussions. The Wellcome Trust, NERC, BBSRC and Royal Society provided funding.

Author Contributions S.E.R. conceived and designed the experiments, carried out the fitness consequences experiment, analysed sex ratio data and prepared the manuscript. D.R.D. developed the PCR assays, carried out the sex ratio experiments and data collection. A.G. analysed the fitness data and contributed to discussions and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Reece.

Supplementary information

Supplementray Information

The file contains Supplementary Data with Supplementary Table S1-S5 and additional references. (PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reece, S., Drew, D. & Gardner, A. Sex ratio adjustment and kin discrimination in malaria parasites. Nature 453, 609–614 (2008). https://doi.org/10.1038/nature06954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06954

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing