Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state

Abstract

The fractional quantum Hall effect, where plateaus in the Hall resistance at values of h/ν e2 coexist with zeros in the longitudinal resistance, results from electron correlations in two dimensions under a strong magnetic field. (Here h is Planck’s constant, ν the filling factor and e the electron charge.) Current flows along the sample edges and is carried by charged excitations (quasiparticles) whose charge is a fraction of the electron charge. Although earlier research concentrated on odd denominator fractional values of ν, the observation of the even denominator ν = 5/2 state sparked much interest. This state is conjectured to be characterized by quasiparticles of charge e/4, whose statistics are ‘non-abelian’—in other words, interchanging two quasiparticles may modify the state of the system into a different one, rather than just adding a phase as is the case for fermions or bosons. As such, these quasiparticles may be useful for the construction of a topological quantum computer. Here we report data on shot noise generated by partitioning edge currents in the ν = 5/2 state, consistent with the charge of the quasiparticle being e/4, and inconsistent with other possible values, such as e/2 and e. Although this finding does not prove the non-abelian nature of the ν = 5/2 state, it is the first step towards a full understanding of these new fractional charges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum Hall effect in the second Landau level.
Figure 2: The procedure used to identify lower lying states within the QPC.
Figure 3: Conductance and shot noise measurements of partitioned particles at the 5/2 state.
Figure 4: Conductance and shot noise measurements of partitioned particles at the 5/2 state, with a filling factor in the bulk of ν B = 5/2.
Figure 5: Conductance and shot noise at different filling factors in the QPC.

Similar content being viewed by others

References

  1. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  CAS  ADS  Google Scholar 

  2. Prange, R. E. & Girvin, S. M. (eds) The Quantum Hall Effect (Springer, New York, 1987)

    Book  Google Scholar 

  3. Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987)

    Article  CAS  ADS  Google Scholar 

  4. Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  5. Read, N. Paired fractional quantum Hall states and the ν = 5/2 puzzle. Preprint at 〈http://arxiv.org/abs/cond-mat/0011338〉 (2000)

  6. Kitaev, A. Fault tolerant quantum computation by anyons. Ann. Phys. (NY) 303, 2–30 (2003)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  7. Das Sarma, S., Freedman, M., Nayak, C., Simon, S. & Stern, A. Non-abelian anyons and topological quantum computation. Preprint at 〈http://arxiv.org/abs/0707.1889〉 (2007)

  8. Das Sarma, S., Freedman, M. & Nayak, C. Topologically protected qubits from a possible non-abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 (2005)

    Article  ADS  Google Scholar 

  9. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000)

    Article  CAS  ADS  Google Scholar 

  10. Morf, R. H. Transition from quantum Hall to compressible states in the second Landau level: New light on the 5/2 enigma. Phys. Rev. Lett. 80, 1505–1508 (1998)

    Article  CAS  ADS  Google Scholar 

  11. de Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997)

    Article  CAS  ADS  Google Scholar 

  12. Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticles. Phys. Rev. Lett. 79, 2526–2529 (1997)

    Article  CAS  ADS  Google Scholar 

  13. Stern, A. & Halperin, B. I. Proposed experiments to probe the non-abelian ν = 5/2 quantum Hall state. Phys. Rev. Lett. 96, 016802 (2006)

    Article  ADS  Google Scholar 

  14. Fradkin, E. et al. A Chern-Simons effective field theory for the Pfaffian quantum Hall state. Nucl. Phys. B 516, 704–718 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  15. Bonderson, P., Kitaev, A. & Shtengel, K. Detecting non-abelian statistics in the ν = 5/2 fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006)

    Article  ADS  Google Scholar 

  16. Feldman, D. E., Gefen, Y., Kitaev, A., Law, K. T. & Stern, A. Shot noise in anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007)

    Article  ADS  Google Scholar 

  17. Toke, C. & Jain, J. K. Understanding the 5/2 fractional quantum Hall effect without the Pfaffian wave function. Phys. Rev. Lett. 96, 246805 (2006)

    Article  ADS  Google Scholar 

  18. Pan, W. et al. The other even-denominator fractions. Physica E 9, 9–16 (2001)

    Article  CAS  ADS  Google Scholar 

  19. Miller, J. B. et al. Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2. Nature Phys. 3, 561–565 (2007)

    Article  CAS  ADS  Google Scholar 

  20. Chung, Y. C., Heiblum, M. & Umansky, V. Scattering of bunched fractionally charged quasiparticles. Phys. Rev. Lett. 91, 216804 (2003)

    Article  CAS  ADS  Google Scholar 

  21. Griffiths, T. G., Comforti, E., Heiblum, M., Stern, A. & Umansky, V. Evolution of the quasiparticle charge in the fractional quantum Hall regime. Phys. Rev. Lett. 85, 3918–3921 (2000)

    Article  CAS  ADS  Google Scholar 

  22. Reznikov, M. et al. Observation of quasiparticles with one-fifth of an electron’s charge. Nature 389, 238–241 (1999)

    Article  ADS  Google Scholar 

  23. Lesovik, G. B. Excess quantum shot noise in 2D ballistic point contacts. JETP Lett. 49, 592–594 (1989)

    ADS  Google Scholar 

  24. Bena, C. & Nayak, C. Effects of non-Abelian statistics on two-terminal shot noise in a quantum Hall liquid in the Pfaffian state. Phys. Rev. B 73, 155335 (2006)

    Article  ADS  Google Scholar 

  25. Martin, T. & Landauer, R. Wave packet approach to noise in multi-channel mesoscopic systems. Phys. Rev. B 45, 1742–1755 (1992)

    Article  CAS  ADS  Google Scholar 

  26. Chung, Y. C. et al. Anomalous chiral Luttinger liquid behavior of diluted fractionally charged quasiparticles. Phys. Rev. B 67, 201104 (2003)

    Article  ADS  Google Scholar 

  27. Roddaro, S., Pellegrini, V. & Beltram, F. Particle-hole Luttinger liquids in a quantum Hall circuit. Phys. Rev. Lett. 95, 156804 (2005)

    Article  ADS  Google Scholar 

  28. Kane, C. L. & Fisher, M. P. A. Nonequilibrium noise and fractional charge in the quantum Hall effect. Phys. Rev. Lett. 72, 724–727 (1994)

    Article  CAS  ADS  Google Scholar 

  29. Stevn, A. Anyons and the quantum Hall effect–A pedagogical review. Ann. Phys. 1, 204–249 (2008)

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Ra’anan for laying the foundations for these experiments; A. Schreier, I. Neder, N. Ofek, Y. Gross, E. Grosfeld, Y. Gefen, B. I. Halperin, Y. Levinson, B. Rosenow and S. Das Sarma for their suggestions and assistance; J. Miller and C. Marcus for sharing with us their experience of the fabrication process; and L. Pfeiffer for providing us with a sample for initial experimentation. M.H. acknowledges partial support from the Israeli Science Foundation (ISF), the German Israeli Foundation (GIF), and the Minerva foundation. A.S. acknowledges support from the US-Israel Bi-national Science Foundation, the Minerva foundation, and the ISF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dolev.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-8 with Legends. (PDF 2101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolev, M., Heiblum, M., Umansky, V. et al. Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008). https://doi.org/10.1038/nature06855

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06855

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing