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Estimating the impact of school closure on influenza
transmission from Sentinel data
Simon Cauchemez1, Alain-Jacques Valleron2,3,4, Pierre-Yves Boëlle2,3,4, Antoine Flahault2,3,5 & Neil M. Ferguson1

The threat posed by the highly pathogenic H5N1 influenza virus
requires public health authorities to prepare for a human pan-
demic. Although pre-pandemic vaccines and antiviral drugs might
significantly reduce illness rates1,2, their stockpiling is too expen-
sive to be practical for many countries. Consequently, alternative
control strategies, based on non-pharmaceutical interventions,
are a potentially attractive policy option. School closure is the
measure most often considered. The high social and economic
costs of closing schools for months make it an expensive and
therefore controversial policy, and the current absence of quan-
titative data on the role of schools during influenza epidemics
means there is little consensus on the probable effectiveness of
school closure in reducing the impact of a pandemic. Here, from
the joint analysis of surveillance data and holiday timing in
France, we quantify the role of schools in influenza epidemics
and predict the effect of school closure during a pandemic. We
show that holidays lead to a 20–29% reduction in the rate at which
influenza is transmitted to children, but that they have no detect-
able effect on the contact patterns of adults. Holidays prevent 16–
18% of seasonal influenza cases (18–21% in children). By extra-
polation, we find that prolonged school closure during a pandemic
might reduce the cumulative number of cases by 13–17% (18–23%
in children) and peak attack rates by up to 39–45% (47–52% in
children). The impact of school closure would be reduced if it
proved difficult to maintain low contact rates among children
for a prolonged period.

A thorough evaluation of the effectiveness of school closure as a
pandemic mitigation measure is difficult, owing to the limited epi-
demiological data3 and the current deficit in statistical methods to
analyse those data. So far, it has been possible to establish that school
closure is negatively correlated with influenza incidence4,5. Mathe-
matical models have been used to evaluate the impact of school
closure in a pandemic1,2,6. However, in the absence of quantitative
estimates derived from epidemiological data, those models made
strong assumptions about school transmission. The relatively wide
range of effects they predicted1,2,6 shows that modelling assumptions
cannot replace the statistical investigation of epidemiological data.

Here we present a novel statistical approach to evaluating the
impact of school closure on influenza epidemics from the joint ana-
lysis of disease surveillance data and information on the timing of
school holidays in France. The hypothesis we examine is that influ-
enza transmission changes during holidays as a result of the altered
mixing patterns of children. The Sentinel network7,8 (see http://
www.sentiweb.org and Supplementary Information) is an internet-
based network of French general practitioners (GPs). Since 1984,
approximately 1,200 GPs have collected and sent data regularly on
a dozen diseases, including influenza-like illness (case definition:
sudden temperature of .39 uC, myalgia and cough/running nose).

Regional daily incidences of influenza-like illness are estimated as
area-weighted averages from individual GP declarations, using
population data and data on the percentage of GPs participating in
the surveillance network. Data on the timing of French holidays
in different regions was obtained from the French Ministry of
Education. In France, holidays are staggered across three geographic
zones (two zones in 1986 and 1990) and the timing varies from region
to region and from year to year. This provides conditions resembling
those of a natural experiment.

The surveillance data consist of daily incidences for children
(,18 years old) and adults ($18 years old) for the two or three
holiday zones in mainland France and over 21 years (1985–2006).
We assume that half of all influenza patients consult his or her GP,
giving a reasonable average attack rate of 11.4% (range 4.6–20.6%).
We select epidemic periods (weekly incidence .160 per 100,000
inhabitants) and discard one epidemic that lasted 13 days only.
This leaves 60 epidemic periods, with average duration 61 days (range
22–111 days) (Fig. 1a).

We model the spread of influenza in a population structured into
households and schools (Fig. 1d; see Methods and Supplementary
Information). Community transmission also occurs randomly
between all members of the population. The simulated population
matches the structure of the French population (Fig. 1b, c). We
assume that at the start of each influenza season an average of 27%
of the population is immune9, and that immunity is distributed
within the population from its expected stationary distribution
(see Supplementary Information). During holidays, no transmission
occurs in schools, but in other places (household, community),
transmission rates may be modified. We use estimates from another
study10 to characterize household transmission and the infectious-
ness profile (generation time 2.4 days).

The high dimensionality of the data means that model parameters
cannot be estimated using standard statistical methods, such as least-
squares fitting or data augmentation10. We therefore designed a new
statistical approach, based on the simulation of epidemics that are
constrained to be consistent with the observed incidence curves
(Fig. 1e; see Methods and Supplementary Information). Using simu-
lated data, we find that, even in a context with observation errors and
where transmissibility varies substantially between epidemics, the
inference method gives satisfactory estimates of all parameters (see
Supplementary Information). The approach also provides the rela-
tive prediction error (RPE; see Fig. 2a).

We first estimate transmission parameters under the assumption
that influenza transmission is not modified during holidays (see
Supplementary Information). For this model, adult and child RPEs
are close to 0% during the school term (Fig. 2a). Adult RPE is also
close to 0% during holidays; but child RPE drops to 224% (range
220% to 229%) during holidays. This implies that, on average,
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holidays lead to a 24% reduction in the rate at which influenza is
transmitted to children, but that they have no detectable effect on
adults’ contact patterns.

We then estimate transmission parameters allowing for modifica-
tions of children’s contact patterns during holidays. Three quantities
are needed: transmission rates within schools, in the community, and
the increase in non-school transmission rates during holidays (com-
pensatory behaviours). It is not possible to estimate those three quan-
tities independently from the available data. We therefore fix one of
them (compensatory behaviours) and estimate the other two. We then
undertake a rigorous sensitivity analysis on compensatory behaviours,
considering 30 parameter combinations parameterized by the increase
in child-to-child community transmission (dcom 5 0%, 50%, 100%,
150%, 200% and up to ‘) and in child-to-child household transmis-
sion (dhous 5 0%, 50%, 100%, 150% and 200%).

Irrespective of {dcom, dhous}, we find that accounting for holidays
improves the model fit: (1) log-likelihoods are larger (see Supple-
mentary Information); (2) child RPE becomes close to 0% during
holidays (Fig. 2a). We find that the proportion of transmission
occurring in schools increases with {dcom, dhous}, ranging from 7
to 20% overall (Fig. 2c) and from 20 to 54% in children (Fig. 2d).
The proportion of secondary cases of children infected in schools is

16–44%. Other summary statistics are robust to a change in {dcom,
dhous} (see Supplementary Information). Although children repre-
sent 28% of the population, they are responsible for 46–47% of all
infections (Fig. 2e). Household transmission accounts for 36–39% of
infections of children (and 40% of adult infections). Household
members make up 48–50% of secondary cases in children. The basic
reproduction number, R0 (average number of cases generated by one
typical case in a completely susceptible population) is estimated to be
1.7 (range 1.5–1.8) during school term, and 1.4 (range 1.3–1.6) in
holidays. The average R0 for child cases is 2.2 (range 2.0-2.4) during
term and 1.7 (1.4–1.9) during holidays, while for adult cases it is 1.3
(range 1.2-1.4) for both terms and holidays (see Supplementary
Information).

No major difference in transmission is detected between Christmas
and other breaks (winter and spring breaks). For adults, RPE is 0%
(range 24% to 5%) over Christmas and 1% (range 24% to 5%)
during other breaks. For children, RPE is 24% (range 215% to
9%) over Christmas and 21% (range 212% to 12%) during other
breaks.

Classifying each year by the dominant influenza virus type or
subtype and fitting season-specific variations in transmissibility, we
find that subtype B is less transmissible but more child-associated
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Figure 1 | Data, transmission model and inference method. a, Daily
incidence (black line) for children (,18 years old) and adults and holiday
timing (blue bars) for six of the 60 epidemic periods selected among
surveillance data over 21 years (1985–2006) and three holiday zones in
France. Day 0 corresponds to 1 January. Red lines show 200 simulations
from the model, with parameters drawn from their posterior distribution.
b. Size distribution of French households (1999 census). Blue, one adult; red,

two adults. c, Size distribution of French schools (1999 census). d, Schematic
diagram of transmission model in a population structured into households
and schools (see Methods and Supplementary Information). e, Constrained
simulations. For inference, epidemics are simulated which are constrained to
be consistent with observed incidence curves. Black line, the observed
incidence curve for one holiday zone in 1988–89; red lines, 200 constrained
simulations. See Methods and Supplementary Information.
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than subtype A\H3N2 (Wilcoxon test: probability P 5 2.6% for the
strength of transmission, and P 5 1.8% for the relative contribution
of children to transmission) and that subtype A\H1N1 has inter-
mediate characteristics between subtype B and subtype A\H3N2
(no significant difference with subtype B, nor with A\H3N2)
(Fig. 2b).

We then simulate epidemics from the model, with parameters
drawn from their posterior distribution for the different model
variants (Fig. 1a and Supplementary Information). Simulations start
at the same time and with the same number of initial cases as
observed epidemics, use season-specific transmissibility estimates,
but are not otherwise constrained. For adults, 81% (83% for chil-
dren) of observed daily attack rates fall between the 2.5th and 97.5th
percentile of the distribution of simulated daily attack rates.

These simulations are used to assess the impact of school closure
on seasonal and pandemic attack rates. Figure 3a–c shows that, irre-
spective of the assumptions made about {dcom, dhous}, we obtain the
same estimates of the impact of school closure on cumulative and
peak attack rates. For typical holiday timings, the different model
variants predict an average seasonal attack rate of 10.6–11.1%. They
also predict that, if schools were always open, the attack rate would be

12.8–13.4%; that is, holidays prevent 16–18% of seasonal influenza
cases (for adults 14–17%; for children 18–21%).

We then consider the pandemic context, where 100% of the popu-
lation is susceptible and assume that 50% of infections are symp-
tomatic. For typical holiday timings, 31% of the population would
report being ill (37–38% of children); and the daily incidence at the
peak would be 1.6–1.7% (2.1–2.2% in children). If schools were
closed permanently at an early stage (for example, once daily inci-
dence exceeds 20/100,000), with subsequent behaviour typical of
holidays, the cumulative number of cases would be curbed by 13–
17% overall (for children only 18–23%) and the number of cases at
the peak by 39–45% (for children only 47–52%).

Contact patterns might, however, be less affected by prolonged
school closure than by normal school breaks, when people go on
vacation, celebrate Christmas, and so on. The reductions we predict
might therefore be an upper bound of what might happen during
school closure in a pandemic. If compensatory increases in contact
rates {dcom, dhous} were 1.5-fold larger during school closure in a
pandemic than for typical holidays, there would be at most a very
limited reduction in cumulative/peak attack rates and in R0 (Fig. 3d–i
and Supplementary Information).
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Figure 2 | Inferred influenza transmission characteristics. a, Posterior
distribution (2.5%, 25%, 50%, 75% and 97.5% percentiles) of the RPE for
adults and children, during school terms and during holidays, when no
change in transmission is assumed during holidays (left) and when a specific
transmission model is designed for holidays (right). RPE is the average
relative error (Ot 2 Et)/Et between the number Ot of cases observed at time t
and the number Et of cases predicted by the model given the observed
epidemic up to time t 2 1. An RPE close to 0% is indicative of good fit.

b, Strength of transmission, and relative contribution of children to
transmission for each epidemic season according to the circulating subtype19

(see Methods and Supplementary Information for details of calculation).
c, Proportion of school transmission according to the strength of
compensatory behaviours in the community (dcom) and in the household
(dhous). d, Proportion of children infected in schools. e, Proportion of cases
infected by children.
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For one model variant (dcom 5 dhous 5 100%), we then perform
a sensitivity analysis and find that results are relatively robust to
varying other model assumptions (Fig. 3d–i and Supplementary
Information). If prolonged school closure has the same impact as
holidays, the relative reduction in the cumulative number of cases
in a pandemic is always below 20%, except under the unlikely (see
Supplementary Information) assumptions that immunity is comple-
tely clustered in households (42% reduction) or that the generation
time is as long as 4.1 days (25% reduction). Summary statistics on
the place of transmission are also relatively robust to changes in
modelling assumptions (see Supplementary Information).

The derivation of influenza incidence from GP reports is uncertain
because some cases do not visit a GP, only a small proportion of GPs
report, diagnosis is based on influenza-like illness with no viral ascer-
tainment and there are asymptomatic infections. Three observations
do however suggest that the influenza-like illness data provide a
sensible description of influenza circulation. First, they are consistent

with data collected independently on virus circulation (see Supple-
mentary Information). Second, weekly mortality due to pneumonia
and influenza is almost perfectly predicted by the surveillance data
and the circulating strains11. Lastly, solely on the basis of the influ-
enza-like illness data, we found that transmission characteristics of
influenza depended on the circulating subtype (Fig. 2b), in a way that
is consistent with past epidemiological studies12–14.

Although the apparent impact of public health measures was sub-
stantial (that is, up to 50% reduction in transmission) in some US cities
in 1918, it is not possible to disentangle the relative impact of different
measures15–17. School closure was commonly adopted, and in some of
the cities in which schools were closed, the total impact of all public
health measures was estimated to be as low as 10% (ref. 15). Here, we
used a natural experiment to estimate the specific effect of school
closure on seasonal influenza transmission. Our extrapolations to the
pandemic context rest on the relatively strong assumption that people
will behave during a pandemic as they do during seasonal outbreaks.
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Figure 3 | Impact of school closure on seasonal and pandemic influenza.
a, Relative reduction in seasonal influenza cumulative attack rates due to
holidays, according to the assumed compensatory increase in contact rates
in the community (dcom) and in the household (dhous) during French
holidays, and under baseline assumptions (see main text). b, Relative
reduction in pandemic cumulative attack rates due to permanent school
closure, assuming closure has the same effect on transmission as holidays.
c, As for b, but for peak daily attack rate. d–i, Sensitivity analyses for
parameters estimated assuming dcom 5 dhous 5 100% during French
holidays. A: baseline (see main text); B: 19 smallest outbreaks discarded;
C and D: epidemic period defined as weekly incidence over 120/100,000 or
200/100,000 respectively; E and F: 3.25-day and 4.11-day generation time
respectively; G: household transmission rates 25% smaller than estimated in

ref. 10; H–K: adult reporting rates of 30%, 70%, 50% and 50% respectively,
with child reporting rates of 30%, 70%, 30% and 70% respectively; L:
immunity seeded independently of household; M: immunity clustered by
household; N: 50% immune. d, Seasonal cumulative attack rates among
children during a typical holiday pattern (blue) and when schools are never
closed (yellow). e, As for d, but for the whole population. f, Pandemic
cumulative attack rates among children during a typical holiday pattern
(blue); when schools are closed throughout with dcom 5 dhous 5 100%
(pink); when schools are closed throughout but with compensatory contact
rate increases 1.5-fold larger than normal holidays, that is
dcom 5 dhous 5 150% (green); and as for green but with dcom 5 dhous 5 125%
(red). g, As for f, but for the whole population. h, As for f, but for peak daily
attack rates. i, As for h, but for the whole population.
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Because demography and school holiday patterns are similar
across much of Europe, we are confident that our results can be
extrapolated to other European countries. Extrapolation to deve-
loping countries is more difficult because of the absence of indepen-
dent data.

Compared with other studies of influenza transmission18,19, our
analysis shows that age is an important determinant of seasonal
variations in influenza transmission both within (holidays fun-
damentally affect children’s contact patterns) and between epidemics
(there are large variations between seasons in the relative contri-
bution of children to transmission).

Methods used to estimate parameters of complex transmission
models (for example, data augmentation techniques10) have tradition-
ally been very distinct from techniques used for prediction (that is,
simulation1). The difficulty (and sometimes, as here, impossibility) of
implementing those estimation methods for high-dimensional
dynamical models largely explains why estimation often rests on naive
least-squares fitting. In contrast, the new statistical method presented
here, which relies on sequential Monte Carlo methods20,21, makes it
straightforward to upgrade a complex epidemic simulator to a com-
putationally efficient likelihood-based inference tool.

Pandemic planning is a challenging task in today’s highly con-
nected world and when some key characteristics of the future pan-
demic virus cannot be predicted. Mathematical models provide a
framework for assisting rational decision-making. However, for
models to have predictive power, it is critical that they make full
use of epidemiological data. Undertaking more epidemiological
studies and designing statistical methods to extract maximum
information from the data collected therefore remains a priority.

In public health terms, our conclusions do not rule out the use of
school closure in a severe pandemic. We predict that this policy can
significantly reduce the stress on healthcare systems at the peak of the
pandemic. But our work should temper expectations of the scale of
the reduction in overall illness and mortality achievable through this
measure alone.

METHODS SUMMARY
Transmission model. The household transmission rate associated with an

infective person of age a (where a 5 A for adult or C for child) is ba
housf tð Þ

�
n,

where n is the size of the household and f(t) characterizes the relative infectious-

ness at time t since infection. An infectious child infects children in the same

school at a rate bschoolf tð Þ=Nschool where Nschool is the size of the school. We make

a distinction between adult-to-adult (ARA), child-to-child (CRC) and adult-

to-child or child-to-adult (ARC, CRA) transmission in the community.

During holidays, CRC community transmission increases by a factor of 11dcom

(11dhous for household transmission). We explore a range of possible compen-

satory behaviours, parameterized by dcom 5 0%, 50%, 100%, 150% 200% and ‘

(dcom 5 ‘ is the extreme situation where children mix only in schools during

school terms and mix only in the community during holidays) and dhous 5 0%,

50%, 100%, 150% and 200%. At any time t, susceptible individual i is exposed to

a baseline infection risk of lbaseline
i tð Þ, which is the sum of the baseline risks of

infection in their household, their school (for children) and the community. To

model seasonal variations in influenza transmission, we introduce for each year y

the strength of transmission sy and the relative contribution of children to

transmission ty. During year y, at time t, the risk of infection li,y tð Þ for suscept-

ible i is sy ty lbaseline
i tð Þ if i is a child and sy

�
ty

� �
lbaseline

i tð Þ if i is an adult. See the

Supplementary Information for more information.

‘Constrained’ simulations. To approximate the likelihood of the parameters, we

simulate epidemics constrained to be consistent with the observed incidence

curves (Fig. 1e). At any time t, on average, the number of cases generated by

the constrained simulator equals the observed number of cases. The likelihood is

then approximated by sequential importance sampling20,21, and the parameters

space is explored by Markov-chain Monte-Carlo sampling22,23. Details on the

simulation of constrained epidemics and the statistical methodology are given in

the Supplementary Information and online-only Methods.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Simulation of ‘unconstrained’ epidemics. Let h be the baseline transmission

parameters and V the set of parameters characterizing annual variations in

transmission. Consider an outbreak occurring in year y. Given the initial state

of the system, it is straightforward to simulate epidemics from the model (we use

a discrete time-step of DT 5 0.25 days). The epidemic starts at time-step L 5 0.

Denote by ZL the history of the epidemic (specifying those in the population

who are infected and those who are immune, and the times of infection) up to

time-step L. Given ZL 2 1, the probability that susceptible person i is infected

during time-step L is:

pL
i,y~1{ exp {li,y LDTð ÞDT

� �
where li, y(t) is the hazard of infection. The associated density is:

P ZLjZL { 1,h,Vð Þ~ P
i: susceptible people at L { 1

pL
i,y

� �xL
i

1{pL
i,y

� �1{xL
i

where xL
i is equal to 1 if susceptible person i is infected at time-step L and zero

otherwise. The unconstrained density for the complete history of the epidemic Z is:

g Z jh,Vð Þ~P Z0jY ,hð Þ P
?

L ~ 1
P ZLjZL { 1,h,Vð Þ ð1Þ

Seeding the initial state of the system {Z0} is described in the Supplementary

Information.

Simulation of constrained epidemics. We modify the unconstrained simulator

to a constrained simulator, which simulates epidemics consistent with the data.

Assume that the constrained epidemic has been simulated up to time-step L 2 1.

From the model, we compute the risk of infection li, y(LDT) for each susceptible

person i for time-step L; and derive the expected incidence for adults EA(L) and
children EC(L):

EA Lð Þ~

P
i:a(i)~A

li, y LDTð ÞDT

Ncom

and EC Lð Þ~

P
i:a(i)~C

li, y LDTð ÞDT

Ncom

We denote by YA(L) and YC(L) the observed incidence at time step L among adults

and children respectively. The ratio of observed incidence to expected incidence is

rA(L) 5 YA(L)/EA(L) for adults and rC(L) 5 YC(L)/EC(L) for children. The con-

strained epidemic is obtained by simulating the infection process with corrected

infection risks. For any susceptible person i, the corrected infection risk is:

l�i, y LDTð Þ~ra ið Þ Lð Þli, y LDTð Þ

where a(i) is the age (either adult or child status) of the susceptible person. It is

straightforward to check that, for the constrained process, the expected incidence

at time step L is YA(L) for adults and YC(L) for children.
The density of the constrained simulation for time-step L is:

Pconstrained ZLjZL { 1,Y ,h,Vð Þ~ P
i: susceptible people at L { 1

pL�
i, y

� �xL
i

1{pL�
i, y

� �1 { xL
i

where pL�
i, y~1{ exp {l�i, y LDTð ÞDT

n o
is the constrained probability of infec-

tion. The constrained density for the complete history of the epidemic Z is:

h Z jY ,h,Vð Þ~P Z0jY ,hð Þ P
?

L ~ 1
Pconstrained ZLjZL { 1,Y ,h,Vð Þ ð2Þ

Approximation of the likelihood. If the complete history of the epidemic Z

(who has been infected when in the structured population) was known, it would

be easy to write down the probability P(Zjh, V) (see Supplementary

Information), and then likelihood-based inference, in a frequentist or bayesian

setting, would be straightforward. However, the data Y consist only of daily

incidences. The likelihood P(Yjh, V) is then difficult to compute because it

requires integration with respect to the (unobserved) complete history Z, which

has a very high dimension:

P Y jh, Vð Þ~
ð

Z

P Y jZð Þg Z jh, Vð Þ dZ

The first term of the integrand is the observation model, which ensures that

complete history Z is consistent with the observed curves Y: so P(YjZ) is equal to

1 if Z is consistent with Y and 0 otherwise. The second term is the sampling

density for the complete history Z of the epidemic (equation (1)).

We have designed an approach based on sequential importance sampling20,21

to approximate the likelihood. The idea is to work with simulated epidemics that

are constrained to be consistent with the observation Y (see above), and have

density h (equation (2)). We can rewrite the likelihood (via multiplication by 1)

as:

P Y jh, Vð Þ~
ð

Z

g Z jh,Vð Þ
h Z jY ,hsimul,Vsimulð Þ h Z jY ,hsimul,Vsimulð ÞdZ

To obtain an importance sampling approximation21 of this integral, we simulate

Z1,…, ZN constrained epidemics (sampling from density h, with parameters

{hsimul, Vsimul}), and approximate the likelihood by:

P Y jh, Vð Þ< 1

N

XN

n ~ 1

g Z jh,Vð Þ
h Z jY ,hsimul,Vsimulð Þ

There is much less stochastic fluctuation in the sampling process than for uncon-

strained epidemics, so we do not have to simulate large numbers of epidemics per

observed curve. We found that the integral was well evaluated using only one

simulation per observed curve (N 5 1; see Supplementary Information). So, in

practice, we used N 5 1. This point makes the whole estimation process extre-

mely efficient.

Another typical feature of sequential importance sampling is that the epidemic

trajectory supporting estimation of the log-likelihood does not have to be

obtained with the parameters of interest, that is {hsimul, Vsimul} may be different

from {h, V}. Therefore, using a trajectory simulated with well-chosen values of

{hsimul, Vsimul}, the approximation of the log-likelihood is possible in a larger

region of the parameter space. This property is at the heart of our estimates of the

annual variations in transmission V (see Supplementary Information).

Statistical framework. In a bayesian context, we explore the posterior distri-

bution of the parameters by Markov-chain Monte Carlo sampling22. When we

account for annual variations in influenza transmission V, we rely on the profile

likelihood for h:

LP h, Yð Þ~P Y h, V̂V hð Þ
��� �

where V̂V hð Þ maximizes P(Yjh, V) with respect to V and satisfies identifiability

constraints (see Supplementary Information).
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