Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for the function and inhibition of an influenza virus proton channel

A Corrigendum to this article was published on 20 March 2008

Abstract

The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating2. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses3,4. Binding of amantadine physically occludes the pore, and might also perturb the pKa of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the M2 proton channel from the influenza A virus.
Figure 2: Asymmetric structure of the C-terminal His/Trp gate of M2TM.
Figure 3: Superpositions of the crystallographic tetramer demonstrate conformational differences in the C-terminal gating region of the channel.
Figure 4: Minimal mechanism of activation and conductance through the channel.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates for the apo form of M2TM have been deposited in the Protein Data Bank under the accession code 3BKD; coordinates for additional models are available from R.A.

References

  1. Deyde, V. M. et al. Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J. Infect. Dis. 196, 249–257 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Tang, Y., Zaitseva, F., Lamb, R. A. & Pinto, L. H. The gate of the influenza virus M2 proton channel is formed by a single tryptophan residue. J. Biol. Chem. 277, 39880–39886 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Grambas, S., Bennett, M. S. & Hay, A. J. Influence of amantadine resistance mutations on the pH regulatory function of the M2 protein of influenza A viruses. Virology 191, 541–549 (1992)

    Article  CAS  PubMed  Google Scholar 

  4. Bright, R. A., Shay, D. K., Shu, B., Cox, N. J. & Klimov, A. I. Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. J. Am. Med. Assoc. 295, 891–894 (2006)

    Article  CAS  Google Scholar 

  5. Pinto, L. H. et al. A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. Proc. Natl Acad. Sci. USA 94, 11301–11306 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sansom, M. S. P., Kerr, I. D., Smith, G. R. & Son, H. S. The influenza A virus M2 channel: a molecular modeling and simulation study. Virology 233, 163–173 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Zhong, Q. F., Newns, D. M., Pattnaik, P., Lear, J. D. & Klein, M. L. Two possible conducting states of the influenza A virus M2 ion channel. FEBS Lett. 473, 195–198 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Ayton, G. S. & Voth, G. A. Multiscale simulation of transmembrane proteins. J. Struct. Biol. 157, 570–578 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Hu, F., Fu, R. & Cross, T. A. The chemical and dynamic influence of the drug amantadine on the M2 proton channel transmembrane domain. Biophys. J. 93, 276–283 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, J. et al. Histidines, heart of the hydrogen ion channel from influenza A virus: toward an understanding of conductance and proton selectivity. Proc. Natl Acad. Sci. USA 103, 6865–6870 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeuchi, H., Okada, A. & Miura, T. Roles of the histidine and tryptophan side chains in the M2 proton channel from influenza A virus. FEBS Lett. 552, 35–38 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Duff, K. C. & Ashley, R. H. The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology 190, 485–489 (1992)

    Article  CAS  PubMed  Google Scholar 

  13. Salom, D., Hill, B. R., Lear, J. D. & DeGrado, W. F. pH-dependent tetramerization and amantadine binding of the transmembrane helix of M2 from the influenza A virus. Biochemistry 39, 14160–14170 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Cady, S. D., Goodman, C., Tatko, C. D., DeGrado, W. F. & Hong, M. Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, AND 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J. Am. Chem. Soc. 129, 5719–5729 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Stouffer, A. L., Nanda, V., Lear, J. D. & DeGrado, W. F. Sequence determinants of a transmembrane proton channel: an inverse relationship between stability and function. J. Mol. Biol. 347, 169–179 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Wang, J., Kim, S., Kovacs, F. & Cross, T. A. Structure of the transmembrane region of the M2 protein H+ channel. Protein Sci. 10, 2241–2250 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. MacKinnon, R. Potassium channels. FEBS Lett. 555, 62–65 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Wang, C., Takeuchi, K., Pinto, L. H. & Lamb, R. A. Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J. Virol. 67, 5585–5594 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Czabotar, P. E., Martin, S. R. & Hay, A. J. Studies of structural changes in the M2 proton channel of influenza A virus by tryptophan fluorescence. Virus Res. 99, 57–61 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Bright, R. A. et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet 366, 1175–1181 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. De Clercq, E. Antiviral agents active against influenza A viruses. Nature Rev. Drug Discov. 5, 1015–1025 (2006)

    Article  CAS  Google Scholar 

  22. Senes, A., Engel, D. E. & DeGrado, W. F. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14, 465–479 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Nishimura, K., Kim, S. G., Zhang, L. & Cross, T. A. The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR-1. Biochemistry 41, 13170–13177 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Bauer, C. M., Pinto, L. H., Cross, T. A. & Lamb, R. A. The influenza virus M2 ion channel protein: probing the structure of the transmembrane domain in intact cells by using engineered disulfide cross-linking. Virology 254, 196–209 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Hu, J. et al. Backbone structure of the amantadine-blocked trans-membrane domain M2 proton channel from influenza A virus. Biophys. J. 92, 4335–4343 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Betakova, T., Ciampor, F. & Hay, A. J. Influence of residue 44 on the activity of the M2 proton channel of influenza A virus. J. Gen. Virol. 86, 181–184 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Mould, J. A. et al. Mechanism for proton conduction of the M2 ion channel of influenza A Virus. J. Biol. Chem. 275, 8592–8599 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. Gandhi, C. S. et al. Cu(II) inhibition of the proton translocation machinery of the influenza A virus M2 protein. J. Biol. Chem. 274, 5474–5482 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. Holsinger, L. J., Nichani, D., Pinto, L. H. & Lamb, R. A. Influenza A virus M2 ion channel protein: a structure-function analysis. J. Virol. 68, 1551–1563 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schnell, J. R. & Chou, J. J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature doi: 10.1038/nature06531 (this issue)

  32. Choma, C., Gratowski, H., Lear, J. D. & DeGrado, W. F. Asparagine-mediated self-association of a model transmembrane helix. Nature Struct. Biol. 7, 161–166 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Matthews, B. W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968)

    Article  CAS  PubMed  Google Scholar 

  35. Read, R. J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D57, 1373–1382 (2001)

    CAS  Google Scholar 

  36. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)

  37. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240–255 (1997)

    CAS  Google Scholar 

  38. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998)

    Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004)

    CAS  Google Scholar 

  40. SMART, SAINT, SADABS, and XPREP Software Reference Manual (Bruker, AXS Inc., Madison, Wisconsin, 2000)

  41. Schweiters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 66–74 (2003)

    ADS  Google Scholar 

  42. Christopher, A. J., Swanson, R. & Baldwin, T. O. Algorithms for finding the axis of a helix: fast rotational and parametric least-squares methods. Comput. Chem. 20, 339–345 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by a grant from the National Institute of General Medical Studies of the National Institutes of Health. We also acknowledge support from the Kimberly DeLape and Margaret DeLape Fellowship, the University of Pennsylvania’s MRSEC program, and the Nano/Bio Interface Center funded through the National Science Foundation. D.S. was a recipient of a postdoctoral fellowship from the Ministerio de Educación y Cultura (Spain). We thank J. Lear, L. Pinto, R. Lamb, L. Cristian, A. Polischuk, T. Kossiakoff, D. Christianson, M. Lewis and J. Chou for stimulating discussions. We also thank E. Jeavons, L.-H. (P.) Huang and K. Ellis for technical assistance.

Author Contributions D.S. grew the first high-resolution crystals of variants of M2TM, including the drug-free form reported here. A.L.S. selected additional variants and crystallized many other forms including the amantadine complex reported here. R.A. solved and refined both structures, and L.D.C. solved a monomeric form of M2TM used in molecular replacement. Data for the drug-free and amantadine-containing crystals were collected by S.S. and A.L.S., respectively. A.S.L. and V.T. also contributed to crystallization and data collection for crystal forms that were critical to obtaining and interpreting the crystal forms reported here. A.L.S., R.A., L.D.C., V.T. and S.S. processed and interpreted diffraction data. W.F.D., A.L.S., A.S.L., R.A., C.S.S. and V.N. each contributed to the analysis and understanding of the implications of the structure. C.S.S. and V.N. performed molecular modelling. W.F.D., A.S.L., A.L.S., R.A. and C.S.S. wrote the manuscript in consultation with the remaining authors. W.F.D. grew the first low-resolution crystals and supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. DeGrado.

Ethics declarations

Competing interests

W.F.D. chairs the scientific advisory board of InfluMedix, a company that is working on the pharmaceutical intervention of influenza virus infections.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1–2 with Legends, which show the electron density of the interhelical salt bridge, the ordered detergent of the crystal lattice, heavy atom locations, and a structure based model of the S31N mutation. The file also includes crystallographic statistics (Supplementary Table 1). (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stouffer, A., Acharya, R., Salom, D. et al. Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451, 596–599 (2008). https://doi.org/10.1038/nature06528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing