Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low-temperature shear modulus changes in solid 4He and connection to supersolidity

Abstract

Superfluidity—liquid flow without friction—is familiar in helium. The first evidence for ‘supersolidity’, its analogue in quantum solids, came from torsional oscillator measurements1,2 involving 4He. At temperatures below 200 mK, the torsional oscillator frequencies increased, suggesting that some of the solid decoupled from the oscillator. This behaviour has been replicated by several groups3,4,5,6,7, but solid 4He does not respond to pressure differences8, and persistent currents and other signatures of superflow have not been seen. Both experiments and theory9,10,11,12,13,14 indicate that defects are involved; these should also affect the solid’s mechanical behaviour. Here we report a measurement of the shear modulus of solid 4He at low frequencies and strains. We observe large increases below 200 mK, with the same dependence on measurement amplitude, 3He impurity concentration and annealing as the decoupling seen in the torsional oscillator experiments. We explain this unusual elastic behaviour in terms of a dislocation network that is pinned by 3He at the lowest temperatures but becomes mobile above 100 mK. The frequency changes in the torsional oscillator experiments appear to be related to the motion of these dislocations, perhaps by disrupting a possible supersolid state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shear modulus of solid 4 He at strain ε = 2.2 × 10 -8 as a function of temperature.
Figure 2: Shear modulus at 2,000 Hz as a function of peak strain amplitude in the 33.3 bar sample.
Figure 3: Temperature dependence of acoustic resonance peak frequency f r and dissipation 1/ Q for the 33.3 bar sample.
Figure 4: Shear modulus anomaly in solid 4 He for a range of 3 He impurity concentrations.

Similar content being viewed by others

References

  1. Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Kim, E. & Chan, M. H. W. Observation of superflow in solid helium. Science 305, 1941–1944 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Kondo, M., Takada, S., Shibayama, Y. & Shirahama, K. Observation of non-classical rotational inertia in bulk solid 4He. J. Low Temp. Phys. 148, 695–699 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Penzev, A., Yasuta, Y. & Kubota, M. Annealing effect for supersolid fraction in 4He. J. Low Temp. Phys. 148, 677–681 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Rittner, A. S. C. & Reppy, J. D. Observation of classical rotational inertia and nonclassical supersolid signals in solid 4He below 250 mK. Phys. Rev. Lett. 97, 165301 (2006)

    Article  ADS  PubMed  Google Scholar 

  6. Rittner, A. S. C. & Reppy, J. D. Disorder and the supersolid state of solid 4He. Phys. Rev. Lett. 98, 175302 (2007)

    Article  ADS  Google Scholar 

  7. Aoki, Y., Graves, J. C. & Kojima, H. Oscillation frequency dependence of nonclassical rotation inertia of solid 4He. Phys. Rev. Lett. 99, 015301 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Day, J. & Beamish, J. Pressure-driven flow of solid helium. Phys. Rev. Lett. 96, 105304 (2006)

    Article  ADS  PubMed  Google Scholar 

  9. Ceperley, D. M. & Bernu, B. Ring exchanges and the supersolid phase of 4He. Phys. Rev. Lett. 93, 155303 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Prokof’ev, N. & Svistunov, B. Supersolid state of matter. Phys. Rev. Lett. 94, 155302 (2005)

    Article  ADS  PubMed  Google Scholar 

  11. Pollet, L. et al. Superfluidity of grain boundaries in solid 4He. Phys. Rev. Lett. 98, 135301 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Boninsegni, M., Prokof’ev, N. & Svistunov, B. Superglass phase of 4He. Phys. Rev. Lett. 96, 105301 (2006)

    Article  ADS  PubMed  Google Scholar 

  13. Boninsegni, M. et al. Luttinger liquid in the core of a screw dislocation in helium-4. Phys. Rev. Lett. 99, 035301 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Toner, J. Quenched disorder enhanced supersolid ordering. arXiv:0707.3842. (2007)

  15. Kim, E., Xia, J. S., West, J. T., Lin, X. & Chan, M. H. W. Effect of 3He impurity on the supersolid transition of 4He. Bull. Am. Phys. Soc. 52, 610 (2007)

    Google Scholar 

  16. Clark, A. C., West, J. T. & Chan, M. H. W. Non-classical rotational inertia in helium crystals. Preprint at 〈http://arxiv.org/abs/0706.0906〉 (2007)

  17. Sasaki, S., Ishiguro, R., Caupin, F., Maris, H. J. & Balibar, S. Superfluidity of grain boundaries and supersolid behavior. Science 313, 1098–1100 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Lin, X., Clark, A. C. & Chan, M. H. W. Probable heat capacity signature of the supersolid transition. Nature 449, 1025–1028 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Paalanen, M. A., Bishop, D. J. & Dail, H. W. Dislocation motion in hcp 4He. Phys. Rev. Lett. 46, 664–667 (1981)

    Article  ADS  CAS  Google Scholar 

  20. Tsymbalenko, V. L. Measurement of internal friction in solid 4He. Sov. Phys. JETP 47, 787–792 (1978)

    ADS  Google Scholar 

  21. Iwasa, I., Araki, K. & Suzuki, H. Temperature and frequency dependence of the sound velocity in hcp 4He crystals. J. Phys. Soc. Jpn. 46, 1119–1126 (1979)

    Article  ADS  CAS  Google Scholar 

  22. Beamish, J. R. & Franck, J. P. Sound propagation at frequencies from 3 to 21 MHz in hcp and bcc 3He and its interaction with dislocations. Phys. Rev. B 26, 6104–6113 (1982)

    Article  ADS  CAS  Google Scholar 

  23. Huse, D. A. & Khandker, Z. U. Dissipation peak as an indicator of sample inhomogeneity in solid 4He oscillator experiments. Preprint at 〈http://arxiv.org/abs/cond-mat/0702243〉 (2007)

  24. Beamish, J. R. & Franck, J. P. Pinning of dislocations in hcp and bcc 3He by stress waves and by 4He impurities. Phys. Rev. B 28, 1419–1432 (1983)

    Article  ADS  CAS  Google Scholar 

  25. De Gennes, P.-G. Quantum dynamics of a single dislocation. C.R. Phys. 7, 561–566 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Granato, A. & Lucke, K. Theory of mechanical damping due to dislocations. J. Appl. Phys. 27, 583–593 (1956)

    Article  ADS  Google Scholar 

  27. Iwasa, I. & Suzuki, H. Sound velocity and attenuation in hcp 4He crystals containing 3He impurities. J. Phys. Soc. Jpn. 49, 1722–1730 (1980)

    Article  ADS  CAS  Google Scholar 

  28. Nussinov, Z. et al. Origin of the decrease in the torsional-oscillator period of solid 4He. Phys Rev. B 76, 014530 (2007)

    Article  ADS  Google Scholar 

  29. Dorsey, A. T., Goldbart, P. M. & Toner, J. Squeezing superfluid from a stone: coupling superfluidity and elasticity in a supersolid. Phys. Rev. Lett. 96, 055301 (2006)

    Article  ADS  PubMed  Google Scholar 

  30. Anderson, P. W. Two new vortex fluids. Nature Physics 3, 160–162 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada and the University of Alberta for support of this research; we also thank M. H. W. Chan for providing the torsional oscillator data of Figs 1 and 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Beamish.

Supplementary information

Supplementary Information

The file contains Supplementary Figure 1 with Legend, Supplementary Methods, Supplementary Discussion and additional references. The Supplementary Figure 1 displays a schematic of the experimental apparatus. Also a full description of how measurements were made and the resolution of the experiment are given and the file includes an extended discussion on dislocation motion in helium crystals. (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, J., Beamish, J. Low-temperature shear modulus changes in solid 4He and connection to supersolidity. Nature 450, 853–856 (2007). https://doi.org/10.1038/nature06383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06383

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing