Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entanglement-free Heisenberg-limited phase estimation

Abstract

Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At the fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/—known as the standard quantum limit. However, it has long been conjectured1,2 that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N (ref. 3). It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state4,5. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N ≤ 6 (refs 6–15), but few have surpassed the standard quantum limit12,14 and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaev’s phase estimation algorithm16 using adaptive measurement theory17,18,19,20 to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum circuit diagrams of Kitaev’s phase estimation algorithm and our generalization.
Figure 2: Conceptual diagram of the algorithm’s implementation as a Mach–Zehnder interferometer.
Figure 3: Schematic of the experiment.
Figure 4: Standard deviations of distributions of phase estimates for varying numbers of resources N.

Similar content being viewed by others

References

  1. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    Article  ADS  Google Scholar 

  2. Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986)

    Article  ADS  CAS  Google Scholar 

  3. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Rarity, J. G. et al. Two-photon interference in a Mach-Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990)

    Article  ADS  CAS  Google Scholar 

  7. Fonseca, E. J. S., Monken, C. H. & Pádua, S. Measurement of the de Broglie wavelength of a multiphoton wave packet. Phys. Rev. Lett. 82, 2868–2871 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Edamatsu, K., Shimizu, R. & Itoh, T. Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. Phys. Rev. Lett. 89, 213601 (2002)

    Article  ADS  Google Scholar 

  9. Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Eisenberg, H. S., Hodelin, J. F., Khoury, G. & Bouwmeester, D. Multiphoton path entanglement by nonlocal bunching. Phys. Rev. Lett. 94, 090502 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Sun, F. W., Liu, B. H., Huang, Y. F., Ou, Z. Y. & Guo, G. C. Observation of the four-photon de Broglie wavelength by state-projection measurement. Phys. Rev. A 74, 033812 (2006)

    Article  ADS  Google Scholar 

  14. Nagata, T., Okamoto, R., O'Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Resch, K. J. et al. Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Kitaev, A. Y. Quantum measurements and the Abelian stabilizer problem. Electr. Coll. Comput. Complex. 3, article no. 3 (1996)

  17. Wiseman, H. M. Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. Phys. Rev. Lett. 75, 4587–4590 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Berry, D. W. & Wiseman, H. M. Optimal states and almost optimal adaptive measurements for quantum interferometry. Phys. Rev. Lett. 85, 5098–5101 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Armen, M. A., Au, J. K., Stockton, J. K., Doherty, A. C. & Mabuchi, H. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 89, 133602 (2002)

    Article  ADS  Google Scholar 

  20. Cook, R. L., Martin, P. J. & Geremia, J. M. Optical coherent state discrimination using a closed-loop quantum measurement. Nature 446, 774–777 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Mitchell, M. W. Metrology with entangled states. Proc. SPIE 5893, 589310 (2005)

    Article  Google Scholar 

  22. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2000)

    MATH  Google Scholar 

  23. Rudolph, T. & Grover, L. Quantum communication complexity of establishing a shared reference frame. Phys. Rev. Lett. 91, 217905 (2003)

    Article  ADS  Google Scholar 

  24. de Burgh, M. & Bartlett, S. D. Quantum methods for clock synchronization: beating the standard quantum limit without entanglement. Phys. Rev. A 72, 042301 (2005)

    Article  ADS  Google Scholar 

  25. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. van Dam, W., D'Ariano, G. M., Ekert, A., Macchiavello, C. & Mosca, M. Optimal quantum circuits for general phase estimation. Phys. Rev. Lett. 98, 090501 (2007)

    Article  ADS  Google Scholar 

  27. Griffiths, R. B. & Niu, C.-S. Semiclassical Fourier transform for quantum computation. Phys. Rev. Lett. 76, 3228–3231 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Wiseman, H. M. & Killip, R. B. Adaptive single-shot phase measurements: a semiclassical approach. Phys. Rev. A 56, 944–957 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Hradil, Z. et al. Quantum phase in interferometry. Phys. Rev. Lett. 76, 4295–4298 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application Ch. 5 Cambridge Univ. Press, Cambridge, UK. (1997)

    Book  Google Scholar 

  31. Schenker, N. Qualms about bootstrap confidence intervals. J. Am. Stat. Assoc. 80, 360–361 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank M. Mitchell, D. Bulger and S. Lo for discussions. This work was supported by the Australian Research Council and the Queensland State Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Pryde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, B., Berry, D., Bartlett, S. et al. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007). https://doi.org/10.1038/nature06257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06257

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing