Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An asteroid breakup 160 Myr ago as the probable source of the K/T impactor

Abstract

The terrestrial and lunar cratering rate is often assumed to have been nearly constant over the past 3 Gyr. Different lines of evidence, however, suggest that the impact flux from kilometre-sized bodies increased by at least a factor of two over the long-term average during the past 100 Myr. Here we argue that this apparent surge was triggered by the catastrophic disruption of the parent body of the asteroid Baptistina, which we infer was a 170-km-diameter body (carbonaceous-chondrite-like) that broke up Myr ago in the inner main asteroid belt. Fragments produced by the collision were slowly delivered by dynamical processes to orbits where they could strike the terrestrial planets. We find that this asteroid shower is the most likely source (>90 per cent probability) of the Chicxulub impactor that produced the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The orbital and size distribution of the observed Baptistina asteroid family.
Figure 2: Estimates of the initial size–frequency distribution of the Baptistina family.
Figure 3: Collisional evolution of the Baptistina family’s size distribution.
Figure 4: The impact rate of Baptistina fragments on Venus, Earth and Mars.

References

  1. Bottke, W. F. et al. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Bottke, W. F. et al. Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156, 399–433 (2002)

    Article  ADS  Google Scholar 

  3. Shoemaker, E. M. Impact cratering through geologic time. J. R. Astron. Soc. Can. 92, 297–309 (1998)

    ADS  Google Scholar 

  4. Grieve, R. A. F. & Shoemaker, E. M. in Hazards Due to Comets and Asteroids (eds Gehrels, T. & Matthews, M. S.) 417–462 (Univ. Arizona Press, Tucson, 1994)

    Google Scholar 

  5. McEwen, A. S., Moore, J. M. & Shoemaker, E. M. The Phanerozoic impact cratering rate: Evidence from the farside of the Moon. J. Geophys. Res. 102, 9231–9242 (1997)

    Article  ADS  Google Scholar 

  6. Grier, J. A. et al. Optical maturity of ejecta from large rayed lunar craters. J. Geophys. Res. 106, 32847–32862 (2001)

    Article  ADS  Google Scholar 

  7. Ward, S. N. & Day, S. Terrestrial crater counts: Evidence for a four-fold increase in bolide flux at 125 Ma. 〈http://es.ucsc.edu/~ward/papers/crater-counts(v1.8).pdf〉 (2007)

  8. Baldwin, R. B. Relative and absolute ages of individual craters and the rate of infalls on the moon in the post-Imbrium period. Icarus 61, 63–91 (1985)

    Article  ADS  Google Scholar 

  9. Levine, J., Becker, T. A., Muller, R. A. & Renne, P. R. 40Ar/39Ar dating of Apollo 12 impact spherules. Geophys. Res. Lett. 32 L15201 doi: 10.1029/2005GL022874 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Dones, L. et al. in Comets II (eds Festou, M. C. et al.) 153–174 (Univ. Arizona Press, Tucson, 2004)

    Google Scholar 

  11. Stokes, G. et al. A study to determine the feasibility of extending the search for near Earth objects to smaller limiting magnitudes. 〈http://neo.jpl.nasa.gov/neo/report.html〉 (2003)

  12. Levison, H. et al. The mass disruption of Oort cloud comets. Science 296, 2212–2215 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Tagle, R. & Claeys, P. Comet or asteroid shower in the Late Eocene? Science 305, 492 (2004)

    Article  CAS  Google Scholar 

  14. Maier, W. D. et al. Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441, 202–206 (2006)

    Article  ADS  Google Scholar 

  15. Zappalà, V., Cellino, A., Gladman, B. J., Manley, S. & Migliorini, F. Asteroid showers on Earth after family breakup events. Icarus 134, 176–179 (1998)

    Article  ADS  Google Scholar 

  16. Schmitz, B., Häggström, T. & Tassinari, M. Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event. Science 300, 961–964 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Nesvorný, D., Vokrouhlický, D., Bottke, W. F., Gladman, B. J. & Häggström, T. Express delivery of fossil meteorites from the inner asteroid belt to Sweden. Icarus 188, 400–413 (2007)

    Article  ADS  Google Scholar 

  18. Knežević, Z. & Milani, A. Proper element catalogs and asteroid families. Astron. Astrophys. 403, 1165–1173 (2003)

    Article  ADS  Google Scholar 

  19. Mothé-Diniz, T., Roig, F. & Carvano, J. M. Reanalysis of asteroid families structure through visible spectroscopy. Icarus 174, 54–80 (2005)

    Article  ADS  Google Scholar 

  20. Morbidelli, A. & Nesvorný, D. Numerous weak resonances drive asteroids toward terrestrial planets orbits. Icarus 139, 295–308 (1999)

    Article  ADS  Google Scholar 

  21. Bottke, W. F., Vokrouhlický, D., Rubincam, D. P. & Nesvorný, D. The Yarkovsky and YORP effects: Implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Vokrouhlický, D., Brož, M., Bottke, W. F., Nesvorný, D. & Morbidelli, A. Yarkovsky/YORP chronology of asteroid families. Icarus 182, 111–142 (2006)

    ADS  Google Scholar 

  23. Ivezić, Ž. et al. Color confirmation of asteroid families. Astron. J. 124, 2943–2948 (2002)

    Article  ADS  Google Scholar 

  24. Durda, D. D. et al. Size–frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families. Icarus 186, 498–516 (2007)

    Article  ADS  Google Scholar 

  25. Durda, D. D. et al. The formation of asteroid satellites in catastrophic impacts: Results from numerical simulations. Icarus 167, 382–396 (2004)

    Article  ADS  Google Scholar 

  26. Bottke, W. F. et al. in Dynamics of Populations of Planetary Systems (eds Knežević, Z. & Milani, A.) 357–376 (Cambridge Univ. Press, Cambridge, UK, 2005)

    Google Scholar 

  27. Bottke, W. F., Vokrouhlický, D., Chapman, C. R. & Nesvorný, D. Gaspra’s steep crater population was produced by a large recent breakup in the main asteroid belt. Lunar Planet. Sci. Conf. abstr. 2165. (2007)

  28. Britt, D. T. et al. in Asteroids III (eds Bottke, W. F. et al.) 485–500 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  29. Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994)

    Article  ADS  Google Scholar 

  30. Brož, M. Yarkovsky Effect and the Dynamics of the Solar System. PhD thesis, Charles Univ. (2006); 〈http://sirrah.troja.mff.cuni.cz/~mira/mp/〉 (2006)

  31. Pravec, P., Harris, A. W. & Michalowski, T. in Asteroids III (eds Bottke, W. F. et al.) 113–122 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  32. Delbò, M. et al. Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect. Icarus (in the press)

  33. Vokrouhlický, D. & Čapek, D. YORP-induced long-term evolution of the spin state of small asteroids and meteoroids. Rubincam’s approximation. Icarus 159, 449–467 (2002)

    Article  ADS  Google Scholar 

  34. Stuart, J. S. & Binzel, R. P. Bias-corrected population, size distribution, and impact hazard for the near-Earth objects. Icarus 170, 295–311 (2004)

    Article  ADS  Google Scholar 

  35. Morbidelli, A. et al. From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard. Icarus 158, 329–342 (2002)

    Article  ADS  Google Scholar 

  36. Binzel, R. P. et al. Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes. Icarus 170, 259–294 (2004)

    Article  ADS  Google Scholar 

  37. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous Tertiary extinction. Science 208, 1095–1108 (1980)

    Article  ADS  CAS  Google Scholar 

  38. Kring, D. A. The Chicxulub impact event and its environmental consequences at the K/T boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. (in the press)

  39. Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, New York, 1989)

    Google Scholar 

  40. Shukolyukov, A. & Lugmair, G. W. Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science 282, 927–930 (1998)

    Article  ADS  CAS  Google Scholar 

  41. Trinquier, A., Birck, J.-L. & Allègre, J. C. The nature of the K/T impactor. A 54Cr reappraisal. Earth Planet. Sci. Lett. 241, 780–788 (2006)

    Article  ADS  CAS  Google Scholar 

  42. Kyte, F. T. A meteorite from the Cretaceous-Tertiary boundary. Nature 396, 237–239 (1998)

    Article  ADS  CAS  Google Scholar 

  43. Clark, B. E. in Asteroids III (eds Bottke, W. F. et al.) 585–599 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  44. Bottke, W. F. et al. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006)

    Article  ADS  CAS  Google Scholar 

  45. Burbine, T. H. et al. in Asteroids III (eds Bottke, W. F. et al.) 653–667 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar 

  46. Stöffler, D. & Ryder, G. Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Space Sci. Res. 96, 9–54 (2001)

    ADS  Google Scholar 

  47. Herrick, R. R. et al. in Venus II (eds Bougher, S. W. et al.) 1015–1046 (Univ. Arizona Press, Tucson, 1997)

    Google Scholar 

  48. Korycansky, D. G. & Zahnle, K. J. Modeling crater populations on Venus and Titan. Planet. Space Sci. 53, 695–710 (2005)

    Article  ADS  Google Scholar 

  49. Nesvorný, D. et al. The Flora family: A case of the dynamically dispersed collisional swarm? Icarus 157, 155–172 (2002)

    Article  ADS  Google Scholar 

  50. Bottke, W. F. et al. Velocity distribution among colliding asteroids. Icarus 107, 255–268 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Beatty, C. Chapman, L. Dones, D. Durda, B. Enke, D. Kring, F. Kyte, M. Gounelle, R. Grimm, A. Harris, H. Levison, A. Morbidelli, A. Rubin, E. Scott, A. Stern and M. Zolensky for discussions and comments. We also thank G. Williams of the Minor Planet Center for computing revised H values and observational errors for the Baptistina family. The work of W.F.B. and D.N. on this project was supported by NASA’s Origins of Solar System, Planetary Geology and Geophysics, and Near-Earth Objects Observations programmes. D.V. was supported by the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Bottke.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion of several issues that were not addressed in the main text with Supplementary Figures S1-S11 and additional references. (PDF 4096 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottke, W., Vokrouhlický, D. & Nesvorný, D. An asteroid breakup 160 Myr ago as the probable source of the K/T impactor. Nature 449, 48–53 (2007). https://doi.org/10.1038/nature06070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06070

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing