Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response

Abstract

The acetyl-transferase Tip60 might influence tumorigenesis in multiple ways1. First, Tip60 is a co-regulator of transcription factors that either promote or suppress tumorigenesis, such as Myc and p532,3,4. Second, Tip60 modulates DNA-damage response (DDR) signalling1, and a DDR triggered by oncogenes can counteract tumour progression5,6. Using Eμ–myc transgenic mice that are heterozygous for a Tip60 gene (Htatip) knockout allele (hereafter denoted as Tip60+/– mice), we show that Tip60 counteracts Myc-induced lymphomagenesis in a haplo-insufficient manner and in a time window that is restricted to a pre- or early-tumoral stage. Tip60 heterozygosity severely impaired the Myc-induced DDR7,8,9 but caused no general DDR defect in B cells. Myc- and p53-dependent transcription were not affected, and neither were Myc-induced proliferation, activation of the ARF–p53 tumour suppressor pathway or the resulting apoptotic response10,11,12,13. We found that the human TIP60 gene (HTATIP) is a frequent target for mono-allelic loss in human lymphomas and head-and-neck and mammary carcinomas, with concomitant reduction in mRNA levels. Immunohistochemical analysis also demonstrated loss of nuclear TIP60 staining in mammary carcinomas. These events correlated with disease grade and frequently concurred with mutation of p53. Thus, in both mouse and human, Tip60 has a haplo-insufficient tumour suppressor activity that is independent from—but not contradictory with—its role within the ARF–p53 pathway1,2,3,14,15,16. We suggest that this is because critical levels of Tip60 are required for mounting an oncogene-induced DDR in incipient tumour cells5,6, the failure of which might synergize with p53 mutation towards tumour progression17,18,19,20.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tip60 haplo-insufficiency accelerates Myc-induced lymphomagenesis but does not alleviate the pressure for p53 inactivation.
Figure 2: Tip60 haplo-insufficiency does not affect B-cell homeostasis, but abrogates a Myc-induced DDR.
Figure 3: Tip60 haplo-insufficiency does not affect Myc- and p53-dependent transcription.
Figure 4: TIP60 is a haplo-insufficient tumour suppressor in human tumours.

Similar content being viewed by others

References

  1. Squatrito, M., Gorrini, C. & Amati, B. Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol. 16, 433–442 (2006)

    Article  CAS  Google Scholar 

  2. Tang, Y., Luo, J., Zhang, W. & Gu, W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 24, 827–839 (2006)

    Article  CAS  Google Scholar 

  3. Sykes, S. M. et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell 24, 841–851 (2006)

    Article  CAS  Google Scholar 

  4. Frank, S. R. et al. Myc recruits the Tip60 histone acetyl-transferase complex to chromatin. EMBO Rep. 4, 575–580 (2003)

    Article  CAS  Google Scholar 

  5. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Prochownik, E. V. & Li, Y. The ever expanding role for c-Myc in promoting genomic instability. Cell Cycle 6, 1024–1029 (2007)

    Article  CAS  Google Scholar 

  8. Pusapati, R. V. et al. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc. Natl Acad. Sci. USA 103, 1446–1451 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Reimann, M. et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 11 June 2007 (doi: 10.1182/blood-2007-02-075614).

    Article  CAS  Google Scholar 

  10. Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999)

    Article  CAS  Google Scholar 

  11. Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999)

    Article  CAS  Google Scholar 

  12. Eischen, C. M., Roussel, M. F., Korsmeyer, S. J. & Cleveland, J. L. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol. Cell. Biol. 21, 7653–7662 (2001)

    Article  CAS  Google Scholar 

  13. Schmitt, C. A. et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289–298 (2002)

    Article  CAS  Google Scholar 

  14. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Tyteca, S., Vandromme, M., Legube, G., Chevillard-Briet, M. & Trouche, D. Tip60 and p400 are both required for UV-induced apoptosis but play antagonistic roles in cell cycle progression. EMBO J. 25, 1680–1689 (2006)

    Article  CAS  Google Scholar 

  16. Legube, G. et al. Role of the histone acetyl transferase Tip60 in the p53 pathway. J. Biol. Chem. 279, 44825–44833 (2004)

    Article  CAS  Google Scholar 

  17. Westphal, C. H. et al. atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nature Genet. 16, 397–401 (1997)

    Article  CAS  Google Scholar 

  18. Celeste, A. et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114, 371–383 (2003)

    Article  CAS  Google Scholar 

  19. Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370 (2003)

    Article  CAS  Google Scholar 

  20. Morales, J. C. et al. 53BP1 and p53 synergize to suppress genomic instability and lymphomagenesis. Proc. Natl Acad. Sci. USA 103, 3310–3315 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Nilsson, J. A. et al. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 7, 433–444 (2005)

    Article  CAS  Google Scholar 

  22. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004)

    Article  CAS  Google Scholar 

  23. Eymin, B. et al. p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol. Cell. Biol. 26, 4339–4350 (2006)

    Article  CAS  Google Scholar 

  24. Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B. D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl Acad. Sci. USA 102, 13182–13187 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Shreeram, S. et al. Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J. Exp. Med. 203, 2793–2799 (2006)

    Article  CAS  Google Scholar 

  26. Jiang, X., Sun, Y., Chen, S., Roy, K. & Price, B. D. The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J. Biol. Chem. 281, 15741–15746 (2006)

    Article  CAS  Google Scholar 

  27. Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genet. 38, 896–903 (2006)

    Article  CAS  Google Scholar 

  28. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Sharpless, N. E. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat. Res. 576, 22–38 (2005)

    Article  CAS  Google Scholar 

  30. Hemann, M. T. et al. Suppression of tumorigenesis by the p53 target PUMA. Proc. Natl Acad. Sci. USA 101, 9333–9338 (2004)

    Article  ADS  CAS  Google Scholar 

  31. Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985)

    Article  ADS  CAS  Google Scholar 

  32. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994)

    Article  CAS  Google Scholar 

  33. Kamijo, T. et al. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res. 59, 2464–2469 (1999)

    CAS  PubMed  Google Scholar 

  34. Corcoran, L. M., Cory, S. & Adams, J. M. Transposition of the immunoglobulin heavy chain enhancer to the myc oncogene in a murine plasmacytoma. Cell 40, 71–79 (1985)

    Article  CAS  Google Scholar 

  35. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003)

    Article  CAS  Google Scholar 

  36. Kamer, I. et al. Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122, 593–603 (2005)

    Article  CAS  Google Scholar 

  37. Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001)

    Article  CAS  Google Scholar 

  38. Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc. Natl Acad. Sci. USA 89, 3010–3014 (1992)

    Article  ADS  CAS  Google Scholar 

  39. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B. 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Bergamaschi, D. et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3, 387–402 (2003)

    Article  CAS  Google Scholar 

  41. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006)

    Article  CAS  Google Scholar 

  42. Syed, N. et al. Transcriptional silencing of Polo-like kinase 2 (SNK/PLK2) is a frequent event in B-cell malignancies. Blood 107, 250–256 (2006)

    Article  CAS  Google Scholar 

  43. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med. 4, 844–847 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Campaner, G. Natoli, G. Del Sal, M. Foiani, F. d’Adda di Fagagna, E. Belloni and H. Müller for discussions and comments, F. Contegno for laboratory set-up and management, A. Gobbi, M. Capillo and B. Giulini for management of mouse colonies, L. Tizzoni and L. Bernard for qPCR, I. Muradore for FACS analysis, J. Cleveland and J.-C. Marine for Eμ–myc and p53 knockout mice, A. Gross for phospho-Bid antibodies and P.-G. Pelicci for his continuous support. This work was supported by the Italian Association for Cancer Research (AIRC) and the ‘Ricerca Finalizzata’ program of the Italian Health Ministry (to B.A.), in part by the NIH (to J.L.) and by the National Cancer Institute of Canada and CancerCare Manitoba Foundation (to S.M.).

Author Contributions C.G., M.S. and B.A. conceived the work and designed the experiments. B.A. supervised the project and wrote the manuscript. C.G. and M.S. performed all of the experimental work on mice and cells, with the exceptions listed below. F. Martinato optimized the ChIP assays on freshly isolated B-cells. S.B. characterized Tip60+/– MEFs. D.P. performed the experiments in ARF and ATM knockout MEFs. D.S. performed the genotyping of all mice. S.C. and M. Cesaroni contributed bioinformatic analysis. L.W. and S.M. performed cytogenetic analysis of telomeres in B cells. F. Marchesi and E.S. performed the mouse pathology. A.V. constructed and optimized the Tip60 shRNA and provided technical assistance. N.S., M.G. and T.C. contributed the genetic analysis of human tumours. C.L., M. Capra and P.N. produced and analysed the IHC data on human tumours. J.L. constructed the Tip60+/– mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Amati.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-9 with Legends. (PDF 27465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorrini, C., Squatrito, M., Luise, C. et al. Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063–1067 (2007). https://doi.org/10.1038/nature06055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06055

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing