Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A ferromagnet in a continuously tunable random field

Abstract

Most physical and biological systems are disordered, even though the majority of theoretical models treat disorder as a weak perturbation. One particularly simple system is a ferromagnet approaching its Curie temperature, TC, where all of the spins associated with partially filled atomic shells acquire parallel orientation. With the addition of disorder by way of chemical substitution, the Curie point is suppressed, but no qualitatively new phenomena appear in bulk measurements as long as the disorder is truly random on the atomic scale and not so large as to eliminate ferromagnetism entirely1. Here we report the discovery that a simply measured magnetic response is singular above the Curie temperature of a model, disordered magnet, and that the associated singularity grows to an anomalous divergence at TC. The origin of the singular response is the random internal field induced by an external magnetic field transverse to the favoured direction for magnetization2,3,4. The fact that ferromagnets can be studied easily and with high precision using bulk susceptibility and a large variety of imaging tools will not only advance fundamental studies of the random field problem, but also suggests a mechanism for tuning the strength of domain wall pinning, the key to applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Random fields in a diluted, dipolar-coupled ferromagnet drive the system away from mean-field behaviour.
Figure 2: Real part of the magnetic susceptibility χ ′ of LiHo 0.44 Y 0.56 F 4 measured versus transverse field Γ at a series of temperatures.
Figure 3: Critical behaviour of LiHoxY1- xF4 in the paramagnetic regime as a function of T at Γ = 0 and Γ at T = TC.
Figure 4: Singularities above the Curie temperature.

Similar content being viewed by others

References

  1. Reich, D. H. et al. Dipolar magnets and glasses: Neutron-scattering, dynamical, and calorimetric studies of randomly distributed Ising spins. Phys. Rev. B 42, 4631–4644 (1990)

    Article  ADS  CAS  Google Scholar 

  2. Tabei, S. M. A., Gingras, M. J. P., Kao, Y.-J., Stasiak, P. & Fortin, J.-Y. Induced random fields in the LiHoxY1-xF4 quantum Ising magnet in a transverse magnetic field. Phys. Rev. Lett. 97, 237203 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Schechter, M. LiHoxY1-xF4 as a random field Ising ferromagnet. Preprint at 〈http://arxiv.org/cond-mat/0611063〉 (2006)

  4. Ghosh, S., Rosenbaum, T. F., Aeppli, G. & Coppersmith, S. N. Entangled quantum state of magnetic dipoles. Nature 425, 48–51 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Ma, S. K. Modern Theory of Critical Phenomena (Addison-Wesley, Reading, Massachusetts, 1976)

    Google Scholar 

  6. Fishman, S. & Aharony, A. Random field effects in disordered anisotropic anti-ferromagnets. J. Phys. C 12, L729–L733 (1979)

    Article  ADS  Google Scholar 

  7. Gofman, M. et al. Critical behavior of the random-field Ising model. Phys. Rev. B 53, 6362–6384 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Yoshizawa, H. et al. Random-field effects in two- and three-dimensional Ising antiferromagnets. Phys. Rev. Lett. 48, 438–441 (1982)

    Article  ADS  CAS  Google Scholar 

  9. Ferreira, I. B., King, A. R., Jaccarino, V., Cardy, J. L. & Guggenheim, H. J. Random-field-induced destruction of the phase transition of a diluted two-dimensional Ising antiferromagnet: Rb2Co0.85Mg0.15F4 . Phys. Rev. B 28, 5192–5198 (1983)

    Article  ADS  CAS  Google Scholar 

  10. Belanger, D. P., King, A. R., Jaccarino, V. & Cardy, J. L. Random-field critical behavior of a d = 3 Ising system. Phys. Rev. B 28, 2522–2526 (1983)

    Article  ADS  CAS  Google Scholar 

  11. Birgeneau, R. J. et al. Critical behavior of a site-diluted three-dimensional Ising magnet. Phys. Rev. B 27, 6747–6753 (1983)

    Article  ADS  CAS  Google Scholar 

  12. Belanger, D. P. & Young, A. P. The random field Ising model. J. Magn. Magn. Mater. 100, 272–291 (1991)

    Article  ADS  CAS  Google Scholar 

  13. Belanger, D. P. & Yoshizawa, H. Neutron scattering and the critical behavior of the three-dimensional Ising magnet FeF2 . Phys. Rev. B 35, 4823–4830 (1987)

    Article  ADS  CAS  Google Scholar 

  14. Slanic, Z., Belanger, D. P. & Fernandez-Baca, J. A. Equilibrium random-field Ising critical scattering in the antiferromagnet Fe0.93Zn0.07F2 . Phys. Rev. Lett. 82, 426–429 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Ronnow, H. M. et al. Quantum phase transition of a magnet in a spin bath. Science 308, 389–392 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Hansen, P. E., Johansson, T. & Nevald, R. Magnetic properties of lithium rare-earth fluorides: Ferromagnetism in LiErF4 and LiHoF4 and crystal-field parameters at the rare-earth and Li sites. Phys. Rev. B 12, 5315–5324 (1975)

    Article  ADS  CAS  Google Scholar 

  17. Bitko, D., Rosenbaum, T. F. & Aeppli, G. Quantum critical behavior for a model magnet. Phys. Rev. Lett. 77, 940–943 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Wu, W., Ellman, B., Rosenbaum, T. F., Aeppli, G. & Reich, D. H. From classical to quantum glass. Phys. Rev. Lett. 67, 2076–2079 (1991)

    Article  ADS  CAS  Google Scholar 

  19. Chakraborty, P. B., Henelius, P., Kjonsberg, H. & Sandvik, A. W. &. Girvin. S. M. Theory of the magnetic phase diagram of LiHoF4 . Phys. Rev. B 70, 144411 (2004)

    Article  ADS  Google Scholar 

  20. Brooke, J., Bitko, D., Rosenbaum, T. F. & Aeppli, G. Quantum annealing of a disordered magnet. Science 284, 779–781 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Ghosh, S., Parthasarathy, R., Rosenbaum, T. F. & Aeppli, G. Coherent spin oscillations in a disordered magnet. Science 296, 2195–2198 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Brooke, J., Rosenbaum, T. F. & Aeppli, G. Tunable quantum tunnelling of magnetic domain walls. Nature 413, 610–613 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Bitko, D. Order and Disorder in a Model Quantum Magnet.Ph.D. thesis, Univ. Chicago. (1997)

  24. Aharony, A. & Halperin, B. I. Exact relations among amplitudes at critical points of marginal dimensionality. Phys. Rev. Lett. 35, 1308–1310 (1975)

    Article  ADS  CAS  Google Scholar 

  25. Brezin, E. & Zinn-Justin, J. Critical behavior of uniaxial systems with strong dipolar interactions. Phys. Rev. B 13, 251–254 (1976)

    Article  ADS  Google Scholar 

  26. Ahlers, G., Kornblit, A. & Guggenheim, H. J. Logarithmic corrections to the Landau specific heat near the Curie temperature of the dipolar Ising ferromagnet LiTbF4 . Phys. Rev. Lett. 34, 1227–1230 (1975)

    Article  ADS  CAS  Google Scholar 

  27. Griffiths, R. B. Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23, 17–19 (1969)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work at the University of Chicago was supported by the US Department of Energy and the MRSEC programme of the US National Science Foundation, while work in London was supported by the UK Engineering and Physical Sciences Research Council and a Wolfson-Royal Society Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Rosenbaum.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silevitch, D., Bitko, D., Brooke, J. et al. A ferromagnet in a continuously tunable random field. Nature 448, 567–570 (2007). https://doi.org/10.1038/nature06050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06050

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing