Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease

Abstract

Most eukaryotic messenger RNA precursors (pre-mRNAs) undergo extensive maturational processing, including cleavage and polyadenylation at the 3′-end1,2,3,4,5,6,7,8. Despite the characterization of many proteins that are required for the cleavage reaction, the identity of the endonuclease is not known4,9,10. Recent analyses indicated that the 73-kDa subunit of cleavage and polyadenylation specificity factor (CPSF-73) might be the endonuclease for this and related reactions10,11,12,13,14,15, although no direct data confirmed this. Here we report the crystal structures of human CPSF-73 at 2.1 Å resolution, complexed with zinc ions and a sulphate that might mimic the phosphate group of the substrate, and the related yeast protein CPSF-100 (Ydh1) at 2.5 Å resolution. Both CPSF-73 and CPSF-100 contain two domains, a metallo-β-lactamase domain and a novel β-CASP (named for metallo-β-lactamase, CPSF, Artemis, Snm1, Pso2) domain12. The active site of CPSF-73, with two zinc ions, is located at the interface of the two domains. Purified recombinant CPSF-73 possesses RNA endonuclease activity, and mutations that disrupt zinc binding in the active site abolish this activity. Our studies provide the first direct experimental evidence that CPSF-73 is the pre-mRNA 3′-end-processing endonuclease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of human CPSF-73 and yeast CPSF-100 (Ydh1).
Figure 2: The β-CASP domain of CPSF-73 and CPSF-100.
Figure 3: The active site of CPSF-73.
Figure 4: CPSF-73 possesses endoribonuclease activity.

Similar content being viewed by others

References

  1. Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766 (1997)

    Article  CAS  Google Scholar 

  2. Wahle, E. & Ruegsegger, U. 3'-end processing of pre-mRNA in eukaryotes. FEMS Microbiol. Rev. 23, 277–295 (1999)

    Article  CAS  Google Scholar 

  3. Zhao, J., Hyman, L. & Moore, C. L. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Proudfoot, N. J. New perspectives on connecting messenger RNA 3' end formation to transcription. Curr. Opin. Cell Biol. 16, 272–278 (2004)

    Article  CAS  Google Scholar 

  5. Zorio, D. A. R. & Bentley, D. The link between mRNA processing and transcription: communication works both ways. Exp. Cell Res. 296, 91–97 (2004)

    Article  CAS  Google Scholar 

  6. Wilusz, C. J., Wormington, M. & Peltz, S. W. The cap-to-tail guide to mRNA turnover. Nature Rev. Mol. Cell Biol. 2, 237–246 (2001)

    Article  CAS  Google Scholar 

  7. Calvo, O. & Manley, J. L. Strange bedfellows: polyadenylation factors at the promoter. Genes Dev. 17, 1321–1327 (2003)

    Article  CAS  Google Scholar 

  8. Vinciguerra, P. & Stutz, F. mRNA export: an assembly line from genes to nuclear pores. Curr. Opin. Cell Biol. 16, 285–292 (2004)

    Article  CAS  Google Scholar 

  9. Shatkin, A. J. & Manley, J. L. The ends of the affair: capping and polyadenylation. Nature Struct. Biol. 7, 838–842 (2000)

    Article  CAS  Google Scholar 

  10. Wickens, M. & Gonzalez, T. N. Knives, accomplices, and RNA. Science 306, 1299–1300 (2004)

    Article  CAS  Google Scholar 

  11. Daiyasu, H., Osaka, K., Ishino, Y. & Toh, H. Expansion of the zinc metallo-hydrolase family of the β-lactamase fold. FEBS Lett. 503, 1–6 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Callebaut, I., Moshous, D., Mornon, J.-P. & de Villartay, J.-P. Metallo-β-lactamase fold within nucleic acids processing enzymes: the β-CASP family. Nucleic Acids Res. 30, 3592–3601 (2002)

    Article  CAS  Google Scholar 

  13. Ryan, K., Calvo, O. & Manley, J. L. Evidence that polyadenylation factor CPSF-73 is the mRNA 3' processing endonuclease. RNA 10, 565–573 (2004)

    Article  CAS  Google Scholar 

  14. Dominski, Z., Yang, X.-C. & Marzluff, W. F. The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell 123, 37–48 (2005)

    Article  CAS  Google Scholar 

  15. Kolev, N. G. & Steitz, J. A. Symplekin and multiple other polyadenylation factors participate in 3'-end maturation of histone mRNAs. Genes Dev. 19, 2583–2592 (2005)

    Article  CAS  Google Scholar 

  16. Mandel, C. R., Gebauer, D., Zhang, H. & Tong, L. A serendipitous discovery that in situ proteolysis is required for the crystallization of yeast CPSF-100 (Ydh1p). Acta Crystallogr. F62, 1041–1045 (2006)

    Google Scholar 

  17. Ullah, J. H. et al. The crystal structure of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia at 1.7Å resolution. J. Mol. Biol. 284, 125–136 (1998)

    Article  CAS  Google Scholar 

  18. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  CAS  Google Scholar 

  19. de la Sierra-Gallay, I. L., Pellegrini, O. & Condon, C. Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature 433, 657–661 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Ishii, R. et al. Crystal structure of the tRNA 3' processing endoribonuclease tRNase Z from Thermotoga maritima.. J. Biol. Chem. 280, 14138–14144 (2005)

    Article  CAS  Google Scholar 

  21. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982)

    Article  CAS  Google Scholar 

  22. Hirose, Y. & Manley, J. L. Creatine phosphate, not ATP, is required for 3' end cleavage of mammalian pre-mRNA in vitro.. J. Biol. Chem. 272, 29636–29642 (1997)

    Article  CAS  Google Scholar 

  23. Garrity, J. D., Bennett, B. & Crowder, M. W. Direct evidence that the reaction intermediate of metallo-β-lactamase L1 is metal bound. Biochemistry 44, 1078–1087 (2005)

    Article  CAS  Google Scholar 

  24. Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005)

    Article  CAS  Google Scholar 

  25. Dominski, Z., Yang, X.-C., Purdy, M., Wagner, E. J. & Marzluff, W. F. A. CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Mol. Cell. Biol. 25, 1489–1500 (2005)

    Article  CAS  Google Scholar 

  26. Moshous, D. et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105, 177–186 (2001)

    Article  CAS  Google Scholar 

  27. Takagaki, Y., Ryner, L. C. & Manley, J. L. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell 52, 731–742 (1988)

    Article  CAS  Google Scholar 

  28. Ma, Y., Pannicke, U., Schwarz, K. & Lieber, M. R. Hairpin opening and overhand processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108, 781–794 (2002)

    Article  CAS  Google Scholar 

  29. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991)

    Article  ADS  CAS  Google Scholar 

  30. Carson, M. Ribbon models of macromolecules. J. Mol. Graph. 5, 103–106 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Ryan for discussions; B. Tweel for characterizing the fungus; R. Abramowitz, J. Schwanof and X. Yang for setting up the X4A beamline at the NSLS; and J. Khan and Y. Shen for help with data collection at the synchrotron. This research is supported in part by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tong.

Ethics declarations

Competing interests

The atomic coordinates have been deposited at the Protein Data Bank (accession numbers 2I7T, 2I7V and 2I7X). Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Results, Supplementary Methods, Supplementary Tables 1 and 1 and Supplementary Figures 1–9. (PDF 3416 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandel, C., Kaneko, S., Zhang, H. et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease. Nature 444, 953–956 (2006). https://doi.org/10.1038/nature05363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05363

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing