Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Broad-band optical parametric gain on a silicon photonic chip

Abstract

Developing an optical amplifier on silicon is essential for the success of silicon-on-insulator (SOI) photonic integrated circuits. Recently, optical gain with a 1-nm bandwidth was demonstrated using the Raman effect1,2,3,4,5,6,7,8,9, which led to the demonstration of a Raman oscillator10,11, lossless optical modulation12 and optically tunable slow light13. A key strength of optical communications is the parallelism of information transfer and processing onto multiple wavelength channels. However, the relatively narrow Raman gain bandwidth only allows for amplification or generation of a single wavelength channel. If broad gain bandwidths were to be demonstrated on silicon, then an array of wavelength channels could be generated and processed, representing a critical advance for densely integrated photonic circuits. Here we demonstrate net on/off gain over a wavelength range of 28 nm through the optical process of phase-matched four-wave mixing in suitably designed SOI channel waveguides. We also demonstrate wavelength conversion in the range 1,511–1,591 nm with peak conversion efficiencies of +5.2 dB, which represents more than 20 times improvement on previous four-wave-mixing efficiencies in SOI waveguides14,15,16,17. These advances allow for the implementation of dense wavelength division multiplexing in an all-silicon photonic integrated circuit. Additionally, all-optical delays18, all-optical switches19, optical signal regenerators20 and optical sources for quantum information technology21, all demonstrated using four-wave mixing in silica fibres, can now be transferred to the SOI platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four-wave mixing with a degenerate pump.
Figure 2: Anomalous group-velocity dispersion and phase-matched four-wave mixing.
Figure 3: Experimentally measured amplification.

Similar content being viewed by others

References

  1. Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731–1739 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Espinola, R. L., Dadap, J. I., Osgood, R. M. Jr, McNab, S. J. & Vlasov, Y. A. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express 12, 3713–3718 (2004)

    Article  ADS  PubMed  Google Scholar 

  3. Liu, A., Rong, H., Paniccia, M., Cohen, O. & Hak, D. Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 12, 4261–4268 (2004)

    Article  ADS  PubMed  Google Scholar 

  4. Rong, H. et al. Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide. Appl. Phys. Lett. 85, 2196–2198 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Xu, Q., Almeida, V. R. & Lipson, M. Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. Opt. Express 12, 4437–4442 (2004)

    Article  ADS  PubMed  Google Scholar 

  6. Liang, T. K. & Tsang, H. K. Efficient Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 85, 3343–3345 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Boyraz, O. & Jalali, B. Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier. Electron. Express 1, 429–434 (2004)

    Article  Google Scholar 

  8. Xu, Q., Almeida, V. R. & Lipson, M. Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide. Opt. Lett. 30, 35–37 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Jones, R. et al. Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express 13, 519–525 (2005)

    Article  ADS  PubMed  Google Scholar 

  10. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Jones, R. et al. Lossless optical modulation in a silicon waveguide using stimulated Raman scattering. Opt. Express 13, 1716–1723 (2005)

    Article  ADS  PubMed  Google Scholar 

  13. Okawachi, Y. et al. All-optical slow-light on a photonic chip. Opt. Express 14, 2317–2322 (2006)

    Article  ADS  PubMed  Google Scholar 

  14. Fukuda, H. et al. Four-wave mixing in silicon wire waveguides. Opt. Express 13, 4629–4637 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Espinola, R. L., Dadap, J. I., Osgood, R. M. Jr, McNab, S. J. & Vlasov, Y. A. C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 13, 4341–4349 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Yamada, K. et al. All-optical efficient wavelength conversion using silicon photonic wire waveguide. IEEE Photon. Technol. Lett. 18, 1046–1048 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Rong, H., Kuo, Y. H., Liu, A., Paniccia, M. & Cohen, O. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. Opt. Express 14, 1182–1188 (2006)

    Article  ADS  PubMed  Google Scholar 

  18. Sharping, J. E. et al. All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion. Opt. Express 13, 7872–7877 (2005)

    Article  ADS  PubMed  Google Scholar 

  19. Lin, Q. et al. 40-Gb/s optical switching and wavelength multicasting in a two-pump parametric device. IEEE Photon. Technol. Lett. 17, 2376–2378 (2005)

    Article  ADS  Google Scholar 

  20. Ciaramella, E. & Trillo, S. All-optical reshaping via four-wave mixing in optical fibers. IEEE Photon. Technol. Lett. 12, 849–851 (2000)

    Article  ADS  Google Scholar 

  21. Li, X., Voss, P. L., Sharping, J. E. & Kumar, P. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005)

    Article  ADS  PubMed  Google Scholar 

  22. Hansryd, J., Andrekson, A., Westlund, M., Li, J. & Hedekvist, P. Fiber-based optical parametric amplifiers and their applications. IEEE Select. Topics Quant. Electron. 8, 506–520 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Tsang, H. K. et al. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength. Appl. Phys. Lett. 80, 416–418 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Foster, M. A., Moll, K. D. & Gaeta, A. L. Optimal waveguide dimensions for nonlinear interactions. Opt. Express 12, 2880–2887 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Raghunathan, V., Claps, R., Dimitropoulos, D. & Jalali, B. Parametric Raman wavelength conversion in scaled silicon waveguides. J. Lightwave Technol. 23, 2094–2102 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Turner, A. C. et al. Tailored anomalous-group velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006)

    Article  ADS  PubMed  Google Scholar 

  28. Dimitropoulos, D., Raghunathan, V., Claps, R. & Jalali, B. Phase-matching and nonlinear optical processes in silicon waveguides. Opt. Express 12, 149–160 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Almeida, V. R., Panepucci, R. R. & Lipson, M. Nanotapers for compact mode conversion. Opt. Lett. 28, 1302–1304 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Liang, T. K. & Tsang, H. K. Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with Y. Okawachi. This work was supported by the Center for Nanoscale Systems, supported by the NSF and the New York State Office of Science, Technology & Academic Research. M.A.F., J.E.S. and A.L.G. acknowledge support from the DARPA DSO Slow-Light Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Gaeta.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, M., Turner, A., Sharping, J. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006). https://doi.org/10.1038/nature04932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04932

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing