Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Snapshots of tRNA sulphuration via an adenylated intermediate

Abstract

Uridine at the first anticodon position (U34) of glutamate, lysine and glutamine transfer RNAs is universally modified by thiouridylase into 2-thiouridine (s2U34), which is crucial for precise translation by restricting codon–anticodon wobble during protein synthesis on the ribosome. However, it remains unclear how the enzyme incorporates reactive sulphur into the correct position of the uridine base. Here we present the crystal structures of the MnmA thiouridylase–tRNA complex in three discrete forms, which provide snapshots of the sequential chemical reactions during RNA sulphuration. On enzyme activation, an α-helix overhanging the active site is restructured into an idiosyncratic β-hairpin-containing loop, which packs the flipped-out U34 deeply into the catalytic pocket and triggers the activation of the catalytic cysteine residues. The adenylated RNA intermediate is trapped. Thus, the active closed-conformation of the complex ensures accurate sulphur incorporation into the activated uridine carbon by forming a catalytic chamber to prevent solvent from accessing the catalytic site. The structures of the complex with glutamate tRNA further reveal how MnmA specifically recognizes its three different tRNA substrates. These findings provide the structural basis for a general mechanism whereby an enzyme incorporates a reactive atom at a precise position in a biological molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the MnmA–tRNA Glu complex.
Figure 2: tRNA recognition.
Figure 3: Sequential snapshots of the sulphuration reaction.
Figure 5: Catalytic mechanisms of MnmA.
Figure 4: In vitro sulphur transfer from IscS to tRNAGlu.

Similar content being viewed by others

References

  1. Björk, G. R. Biosynthesis and function of modified nucleosides. In tRNA: Structure, Biosynthesis and Function (eds Söll, D. & RajBhandary, U. L.) 165–205 (American Society for Microbiology, Washington DC, 1995)

    Chapter  Google Scholar 

  2. Yokoyama, S. & Nishimura, S. Modified nucleosides and codon recognition. In tRNA: Structure, Biosynthesis, and Function (eds Söll, D. & RajBhandary, U. L.) 207–224 (American Society for Microbiology, Washington DC, 1995)

    Chapter  Google Scholar 

  3. Yokoyama, S. et al. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc. Natl Acad. Sci. USA 82, 4905–4909 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ashraf, S. S. et al. Single atom modification (O → S) of tRNA confers ribosome binding. RNA 5, 188–194 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krüger, M. K., Pedersen, S., Hagervall, T. G. & Sørensen, M. A. The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J. Mol. Biol. 284, 621–631 (1998)

    Article  PubMed  Google Scholar 

  6. Urbonavicius, J., Qian, Q., Durand, J. M., Hagervall, T. G. & Björk, G. R. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 20, 4863–4873 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sylvers, L. A., Rogers, K. C., Shimizu, M., Ohtsuka, E. & Söll, D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32, 3836–3841 (1993)

    Article  CAS  PubMed  Google Scholar 

  8. Isel, C., Marquet, R., Keith, G., Ehresmann, C. & Ehresmann, B. Modified nucleotides of tRNA3Lys modulate primer/template loop–loop interaction in the initiation complex of HIV-1 reverse transcription. J. Biol. Chem. 268, 25269–25272 (1993)

    CAS  PubMed  Google Scholar 

  9. Isel, C. et al. Structural basis for the specificity of the initiation of HIV-1 reverse transcription. EMBO J. 18, 1038–1048 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sullivan, M. A., Cannon, J. F., Webb, F. H. & Bock, R. M. Antisuppressor mutation in Escherichia coli defective in biosynthesis of 5-methylaminomethyl-2-thiouridine. J. Bacteriol. 161, 368–376 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kambampati, R. & Lauhon, C. T. MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry 42, 1109–1117 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Ikeuchi, Y., Shigi, N., Kato, J., Nishimura, A. & Suzuki, T. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol. Cell 21, 97–108 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Numata, T. et al. Crystallization and preliminary X-ray analysis of the tRNA thiolation enzyme MnmA from Escherichia coli complexed with tRNAGlu. Acta Crystallogr. F 62, 368–371 (2006)

    Article  CAS  Google Scholar 

  14. Tesmer, J. J., Klem, T. J., Deras, M. L., Davisson, V. J. & Smith, J. L. The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families. Nature Struct. Biol. 3, 74–86 (1996)

    Article  CAS  PubMed  Google Scholar 

  15. Rizzi, M. et al. Crystal structure of NH3-dependent NAD+ synthetase from Bacillus subtilis. EMBO J. 15, 5125–5134 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Palenchar, P. M., Buck, C. J., Cheng, H., Larson, T. J. & Mueller, E. G. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J. Biol. Chem. 275, 8283–8286 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. Mueller, E. G., Palenchar, P. M. & Buck, C. J. The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA. J. Biol. Chem. 276, 33588–33595 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Weeks, C. M. & Miller, R. The design and implementation of SnB version 2.0. J. Appl. Cryst. 32, 120–124 (1999)

    Article  CAS  Google Scholar 

  20. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  Google Scholar 

  21. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996)

    Article  CAS  Google Scholar 

  22. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  23. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  24. Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  25. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  26. Delano, W. L. The PyMOL molecular graphics system. v.0.97 http://www.pymol.org (2002).

  27. Ishitani, R. CueMol: Molecular visualization framework. v.1.1 http://cuemol.sourceforge.jp (2006).

  28. Ikeuchi, Y. et al. Molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition. Mol. Cell 19, 235–246 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Shigi, N., Suzuki, T., Tamakoshi, M., Oshima, T. & Watanabe, K. Conserved bases in the TPsi C loop of tRNA are determinants for thermophile-specific 2-thiouridylation at position 54. J. Biol. Chem. 277, 39128–39135 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. Shigi, N. et al. Temperature-dependent biosynthesis of 2-thioribothymidine of Thermus thermophilus tRNA. J. Biol. Chem. 281, 2104–2113 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Ibba for helpful improvement of the manuscript. We thank M. Kawamoto and N. Shimizu for their help in data collection at SPring-8. This work was supported by a PRESTO program grant from Japan Science and Technology (JST) to O.N., a grant for the National Project on Protein Structural and Functional Analyses from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to O.N., grants from MEXT to O.N., S.F. and T.S., a JSPS Fellowship for Japanese Junior Scientists to Y.I., the Asahi Glass Foundation to S.F., and Sumitomo and Kurata Memorial Hitachi Science and Technology Foundation grants to O.N. Author Contributions T.N. carried out structural determination and mutant preparation, and wrote the paper with editing from S.F. and O.N. S.F. and O.N. assisted the structural determination. Y.I. carried out the biochemical analyses under supervision of T.S. All authors discussed the results and commented on the manuscript. O.N. supervised all of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Nureki.

Ethics declarations

Competing interests

Coordinates and structure factors are deposited in the Protein Data Bank under accession code 2DER, 2DET and 2DEU for the initial tRNA-binding form, the prereaction form, and the adenylated intermediate form, respectively. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1–6 (PDF 60690 kb)

Supplementary Table 1

This table shows the data collection and refinement statistics. (PDF 86 kb)

Supplementary Notes

This file contains Supplementary Discussions, Supplementary Methods, Supplementary Figure Legends and additional references. (DOC 222 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Numata, T., Ikeuchi, Y., Fukai, S. et al. Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 442, 419–424 (2006). https://doi.org/10.1038/nature04896

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04896

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing