Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography

Abstract

The axoneme, which forms the core of eukaryotic flagella and cilia, is one of the largest macromolecular machines, with a structure that is largely conserved from protists to mammals1. Microtubule doublets are structural components of axonemes that contain a number of proteins besides tubulin, and are usually found in arrays of nine doublets arranged around two singlet microtubules. Coordinated sliding of adjacent doublets, which involves a host of other proteins in the axoneme, produces periodic beating movements of the axoneme. We have obtained a three-dimensional density map of intact microtubule doublets using cryo-electron tomography and image averaging. Our map, with a resolution of about 3 nm, provides insights into locations of particular proteins within the doublets and the structural features of the doublets that define their mechanical properties. We identify likely candidates for several of these non-tubulin components of the doublets. This work offers insight on how tubulin protofilaments and accessory proteins attach together to form the doublets and provides a structural basis for understanding doublet function in axonemes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron tomography of microtubule doublets.
Figure 2: Results of averaging tomographic data.
Figure 3: Interpretation of the 3D density map.

Similar content being viewed by others

References

  1. Kohl, L. & Bastin, P. The flagellum of trypanosomes. Int. Rev. Cytol. 244, 227–285 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Witman, G. B., Carlson, K., Berliner, J. & Rosenbaum, J. L. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J. Cell Biol. 54, 507–539 (1972)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Witman, G. B., Carlson, K. & Rosenbaum, J. L. Chlamydomonas flagella. II. The distribution of tubulins 1 and 2 in the outer doublet microtubules. J. Cell Biol. 54, 540–555 (1972)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meza, I., Huang, B. & Bryan, J. Chemical heterogeneity of protofilaments forming the outer doublets from sea urchin flagella. Exp. Cell Res. 74, 535–540 (1972)

    Article  CAS  PubMed  Google Scholar 

  6. Linck, R. W. & Norrander, J. M. Protofilament ribbon compartments of ciliary and flagellar microtubules. Protist 154, 299–311 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Linck, R. W. Flagellar doublet microtubules: fractionation of minor components and α-tubulin from specific regions of the A-tubule. J. Cell Sci. 20, 405–439 (1976)

    CAS  PubMed  Google Scholar 

  8. Linck, R. W. & Langevin, G. L. Structure and chemical composition of insoluble filamentous components of sperm flagellar microtubules. J. Cell Sci. 58, 1–22 (1982)

    CAS  PubMed  Google Scholar 

  9. Linck, R. W., Amos, L. A. & Amos, W. B. Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy. J. Cell Biol. 100, 126–135 (1985)

    Article  CAS  PubMed  Google Scholar 

  10. Linck, R. W. & Stephens, R. E. Biochemical characterization of tektins from sperm flagellar doublet microtubules. J. Cell Biol. 104, 1069–1075 (1987)

    Article  CAS  PubMed  Google Scholar 

  11. Chang, X. J. & Piperno, G. Cross-reactivity of antibodies specific for flagellar tektin and intermediate filament subunits. J. Cell Biol. 104, 1563–1568 (1987)

    Article  CAS  PubMed  Google Scholar 

  12. Linck, R. W., Albertini, D. F., Kenney, D. M. & Langevin, G. L. Tektin filaments: chemically unique filaments of sperm flagellar microtubules. Cell Motility Suppl. 1, 127–132 (1982)

    Article  Google Scholar 

  13. Chen, R., Perrone, C. A., Amos, L. A. & Linck, R. W. Tektin B1 from ciliary microtubules: primary structure as deduced from the cDNA sequence and comparison with tektin A1. J. Cell Sci. 106, 909–918 (1993)

    PubMed  Google Scholar 

  14. Norrander, J. M., Amos, L. A. & Linck, R. W. Primary structure of tektin A1: comparison with intermediate-filament proteins and a model for its association with tubulin. Proc. Natl Acad. Sci. USA 89, 8567–8571 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Steffen, W. & Linck, R. W. Relationship between tektins and intermediate filament proteins: an immunological study. Cell Motil. Cytoskel. 14, 359–371 (1989)

    Article  CAS  Google Scholar 

  16. Pirner, M. A. & Linck, R. W. Tektins are heterodimeric polymers in flagellar microtubules with axial periodicities matching the tubulin lattice. J. Biol. Chem. 269, 31800–31806 (1994)

    CAS  PubMed  Google Scholar 

  17. Hinchcliffe, E. H. & Linck, R. W. Two proteins isolated from sea urchin sperm flagella: structural components common to the stable microtubules of axonemes and centrioles. J. Cell Sci. 111, 585–595 (1998)

    CAS  PubMed  Google Scholar 

  18. Patel-King, R. S., Benashski, S. E. & King, S. M. A bipartite Ca2 + -regulated nucleoside-diphosphate kinase system within the Chlamydomonas flagellum. The regulatory subunit p72. J. Biol. Chem. 277, 34271–34279 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Ikeda, K. et al. Rib72, a conserved protein associated with the ribbon compartment of flagellar A-microtubules and potentially involved in the linkage between outer doublet microtubules. J. Biol. Chem. 278, 7725–7734 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Lindemann, C. B. Testing the geometric clutch hypothesis. Biol. Cell. 96, 681–690 (2004)

    Article  PubMed  Google Scholar 

  21. Bozkurt, H. H. & Woolley, D. M. Morphology of nexin links in relation to interdoublet sliding in the sperm flagellum. Cell Motil. Cytoskel. 24, 109–118 (1993)

    Article  CAS  Google Scholar 

  22. Woolley, D. M. Studies on the eel sperm flagellum. I. The structure of the inner dynein arm complex. J. Cell Sci. 110, 85–94 (1997)

    CAS  PubMed  Google Scholar 

  23. Huang, B., Ramanis, Z. & Luck, D. J. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function. Cell 28, 115–124 (1982)

    Article  CAS  PubMed  Google Scholar 

  24. Gardner, L. C., O'Toole, E., Perrone, C. A., Giddings, T. & Porter, M. E. Components of a “dynein regulatory complex” are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella. J. Cell Biol. 127, 1311–1325 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. Piperno, G., Mead, K., LeDizet, M. & Moscatelli, A. Mutations in the “dynein regulatory complex” alter the ATP-insensitive binding sites for inner arm dyneins in Chlamydomonas axonemes. J. Cell Biol. 125, 1109–1117 (1994)

    Article  CAS  PubMed  Google Scholar 

  26. Piperno, G., Mead, K. & Shestak, W. The inner dynein arms I2 interact with a “dynein regulatory complex” in Chlamydomonas flagella. J. Cell Biol. 118, 1455–1463 (1992)

    Article  CAS  PubMed  Google Scholar 

  27. Kar, S., Fan, J., Smith, M. J., Goedert, M. & Amos, L. A. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J. 22, 70–77 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Waterman-Storer, C. M. in Current Protocols in Cell Biology (eds Bonifacino, J. S., Dasso, M., Harford, J. B., Lippincott-Schwartz, J. & Yamada, K. M.) 13.1.6–13.1.7 (John Wiley, New York, 1998)

    Google Scholar 

  29. Hoops, H. J. & Witman, G. B. Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J. Cell Biol. 97, 902–908 (1983)

    Article  CAS  PubMed  Google Scholar 

  30. Mastronarde, D. N., O'Toole, E. T., McDonald, K. L., McIntosh, J. R. & Porter, M. E. Arrangement of inner dynein arms in wild-type and mutant flagella of Chlamydomonas. J. Cell Biol. 118, 1145–1162 (1992)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Killilea for sea urchin collection, K. Gull for discussions on protofilament numbering, H. Li, B. Rockel and D. Typke for discussions and help with image processing, B. Heymann and C. Yang for discussions and help with BSOFT library usage, and R. Glaeser and M. Auer for suggestions and encouragement. This work is supported by NIH grants and by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth H. Downing.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1–3, Supplementary Methods and additional references. (PDF 1739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, H., Downing, K. Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature 442, 475–478 (2006). https://doi.org/10.1038/nature04816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04816

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing