Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pluripotency of spermatogonial stem cells from adult mouse testis

Abstract

Embryonic germ cells as well as germline stem cells from neonatal mouse testis are pluripotent and have differentiation potential similar to embryonic stem cells1,2, suggesting that the germline lineage may retain the ability to generate pluripotent cells. However, until now there has been no evidence for the pluripotency and plasticity of adult spermatogonial stem cells (SSCs), which are responsible for maintaining spermatogenesis throughout life in the male3. Here we show the isolation of SSCs from adult mouse testis using genetic selection, with a success rate of 27%. These isolated SSCs respond to culture conditions and acquire embryonic stem cell properties. We name these cells multipotent adult germline stem cells (maGSCs). They are able to spontaneously differentiate into derivatives of the three embryonic germ layers in vitro and generate teratomas in immunodeficient mice. When injected into an early blastocyst, SSCs contribute to the development of various organs and show germline transmission. Thus, the capacity to form multipotent cells persists in adult mouse testis. Establishment of human maGSCs from testicular biopsies may allow individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells. Furthermore, these cells may provide new opportunities to study genetic diseases in various cell lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular and molecular characterization of cultured SSCs and maGSCs.
Figure 2: RT–PCR analysis of lineage-specific transcription factors and genes.
Figure 3: Mesoderm differentiation of maGSCs.
Figure 4: Differentiation of maGSCs in vitro and in vivo.

Similar content being viewed by others

References

  1. Matsui, Y., Zsebo, K. & Hogan, B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992)

    Article  CAS  PubMed  Google Scholar 

  2. Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature 414, 98–104 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Oulad-Abdelghani, M. et al. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J. Cell Biol. 135, 469–477 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. Giuili, G. et al. Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep. 3, 753–759 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nayernia, K. et al. Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells. Hum. Mol. Genet. 13, 1451–1460 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Stevens, L. C. & Hummel, K. P. A description of spontaneous congenital testicular teratomas in strain 129 mice. J. Natl. Cancer Inst. 18, 719–747 (1957)

    CAS  PubMed  Google Scholar 

  8. Donehower, L. A. et al. Effects of genetic background on tumorigenesis in p53-deficient mice. Mol. Carcinog. 14, 16–22 (1995)

    Article  CAS  PubMed  Google Scholar 

  9. Solter, D. & Knowles, B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl Acad. Sci. USA 75, 5565–5569 (1978)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Damjanov, I. et al. Immunohistochemical localization of murine stage-specific embryonic antigens in human testicular germ cell tumors. Am. J. Pathol. 108, 225–230 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rossi, P., Sette, C., Dolci, S. & Geremia, R. Role of c-kit in mammalian spermatogenesis. J. Endocrinol. Invest. 23, 609–615 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Kubota, H., Avarbock, M. R. & Brinster, R. L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71, 722–731 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Ling, V. & Neben, S. In vitro differentiation of embryonic stem cells: immunophenotypic analysis of cultured embryoid bodies. J. Cell. Physiol. 171, 104–115 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Nagano, M., Ryu, B. Y., Brinster, C. J., Avarbock, M. R. & Brinster, R. L. Maintenance of mouse male germ line stem cells in vitro. Biol. Reprod. 68, 2207–2214 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Kubota, H., Avarbock, M. R. & Brinster, R. L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 101, 16489–16494 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bonner, A. E., Wang, Y. & You, M. Gene expression profiling of mouse teratocarcinomas uncovers epigenetic changes associated with the transformation of mouse embryonic stem cells. Neoplasia 6, 490–502 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Okuda, A. et al. UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J. 17, 2019–2032 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka, T. S. et al. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res. 12, 1921–1928 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ben-Shushan, E., Thompson, J. R., Gudas, L. J. & Bergman, Y. Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol. Cell. Biol. 18, 1866–1878 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guan, K., Rohwedel, J. & Wobus, A. M. Embryonic stem cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro. Cytotechnology 30, 211–226 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. King, T., Beddington, R. S. & Brown, N. A. The role of the brachyury gene in heart development and left-right specification in the mouse. Mech. Dev. 79, 29–37 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Laugwitz, K. L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Furst, D. O., Osborn, M. & Weber, K. Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J. Cell Biol. 109, 517–527 (1989)

    Article  CAS  PubMed  Google Scholar 

  26. Dimmeler, S. et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest. 108, 391–397 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schoonjans, L. et al. Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells 21, 90–97 (2003)

    Article  PubMed  Google Scholar 

  28. Kanatsu-Shinohara, M., Toyokuni, S. & Shinohara, T. CD9 is a surface marker on mouse and rat male germline stem cells. Biol. Reprod. 70, 70–75 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Meng, X. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Cierpka, D. Meyer, S. Wolf, B. Sadowski, I. Schwandt, C. Müller and S. Burkhardt for technical assistance. We thank M. Schindler, H. Riedesel and S. Wolf for their assistance in the generation of transgenic mice, G. Wulf for help with FACS analysis, and B. Hemmerlein for the analysis of teratomas. This work was supported by grants from the Georg-August-University of Göttingen (Forschungsförderungsprogramm Stammzellen) to K.G. and K.N., and a DFG grant (Emmy-Noether Program) to L.S.M. Author Contributions K.G., G.H., K.N. and W.E. conceived and designed the experiments and performed the data analysis and controls. K.G., K.N., L.S.M., S.W., R.D., J.H.L., J.N., F.W. and M.L. performed the experiments, and K.G., G.H., K.N. and W.E. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Engel or Gerd Hasenfuss.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Full description of methods and analysis used in this study. (DOC 45 kb)

Supplementary Figures and Figure Legends

This file contains Supplementary Figures 1-6. (PDF 1020 kb)

Supplementary Tables

This file contains Supplementary Tables 1-4. Analysis of DNA microsatellite markers in the established cell lines as compared to the other cells cultured in the same facility. (DOC 333 kb)

Supplementary Video 1

Spontaneously and rhythmically beating cells in culture. (MPG 2757 kb)

Supplementary Video Legends

This file contains text to accompany the above Supplementary Video. (DOC 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, K., Nayernia, K., Maier, L. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203 (2006). https://doi.org/10.1038/nature04697

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04697

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing