Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the Sec13/31 COPII coat cage

A Corrigendum to this article was published on 17 August 2006

Abstract

Endomembranes of eukaryotic cells are dynamic structures that are in continuous communication through the activity of specialized cellular machineries1, such as the coat protein complex II (COPII), which mediates cargo export from the endoplasmic reticulum (ER)2,3. COPII consists of the Sar1 GTPase, Sec23 and Sec24 (Sec23/24), where Sec23 is a Sar1-specific GTPase-activating protein and Sec24 functions in cargo selection, and Sec13 and Sec31 (Sec13/31), which has a structural role3. Whereas recent results have shown that Sec23/24 and Sec13/31 can self-assemble to form COPII cage-like particles4, we now show that Sec13/31 can self-assemble to form minimal cages in the absence of Sec23/24. We present a three-dimensional reconstruction of these Sec13/31 cages at 30 Å resolution using cryo-electron microscopy and single particle analysis. These results reveal a novel cuboctahedron geometry with the potential to form a flexible lattice and to generate a diverse range of containers. Our data are consistent with a model for COPII coat complex assembly in which Sec23/24 has a non-structural role as a multivalent ligand localizing the self-assembly of Sec13/31 to form a cage lattice driving ER cargo export.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initial analyses of the self-assembled Sec13/31 cages.
Figure 2: Comparison of the refined Sec13/31 cage structure to the raw data.
Figure 3: 30 Å resolution map of the Sec13/31 cage.
Figure 4: Orientation of the Sec13/31 heterotetramer in the self-assembled cuboctahedral cage.

Similar content being viewed by others

References

  1. Gurkan, C. et al. Large-scale profiling of Rab GTPase trafficking networks: The membrome. Mol. Biol. Cell 16, 3847–3864 (2005)

    Article  CAS  Google Scholar 

  2. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004)

    Article  CAS  Google Scholar 

  3. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004)

    Article  CAS  Google Scholar 

  4. Antonny, B., Gounon, P., Schekman, R. & Orci, L. Self-assembly of minimal COPII cages. EMBO Rep. 4, 419–424 (2003)

    Article  CAS  Google Scholar 

  5. Gurkan, C. & Balch, W. E. Recombinant production in baculovirus-infected insect cells and purification of the mammalian Sec13/Sec31 complex. Methods Enzymol. 404, 58–66 (2005)

    Article  CAS  Google Scholar 

  6. Salama, N. R., Chuang, J. S. & Schekman, R. W. Sec31 encodes an essential component of the COPII coat required for transport vesicle budding from the endoplasmic reticulum. Mol. Biol. Cell 8, 205–217 (1997)

    Article  CAS  Google Scholar 

  7. Lederkremer, G. Z. et al. Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Proc. Natl Acad. Sci. USA 98, 10704–10709 (2001)

    Article  CAS  ADS  Google Scholar 

  8. Kim, J., Hamamoto, S., Ravazzola, M., Orci, L. & Schekman, R. Uncoupled packaging of amyloid precursor protein and presenilin 1 into COPII vesicles. J. Biol. Chem. 280, 7758–7768 (2005)

    Article  CAS  Google Scholar 

  9. Shugrue, C. A. et al. Identification of the putative mammalian orthologue of Sec31P, a component of the COPII coat. J. Cell Sci. 112, 4547–4556 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salama, N. R., Yeung, T. & Schekman, R. W. The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBO J. 12, 4073–4082 (1993)

    Article  CAS  Google Scholar 

  11. Tang, B. L. et al. Mammalian homologues of yeast sec31p. An ubiquitously expressed form is localized to endoplasmic reticulum (ER) exit sites and is essential for ER-Golgi transport. J. Biol. Chem. 275, 13597–13604 (2000)

    Article  CAS  Google Scholar 

  12. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998)

    Article  CAS  Google Scholar 

  13. Matsuoka, K., Schekman, R., Orci, L. & Heuser, J. E. Surface structure of the COPII-coated vesicle. Proc. Natl Acad. Sci. USA 98, 13705–13709 (2001)

    Article  CAS  ADS  Google Scholar 

  14. Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Cargo can modulate COPII vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 274, 4389–4399 (1999)

    Article  CAS  Google Scholar 

  15. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  CAS  Google Scholar 

  16. Belden, W. J. & Barlowe, C. Purification of functional Sec13p-Sec31p complex, a subunit of COPII coat. Methods Enzymol. 329, 438–443 (2001)

    Article  CAS  Google Scholar 

  17. Shimoni, Y. & Schekman, R. Vesicle budding from endoplasmic reticulum. Methods Enzymol. 351, 258–278 (2002)

    Article  CAS  Google Scholar 

  18. Pryer, N. K., Salama, N. R., Schekman, R. & Kaiser, C. A. Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J. Cell Biol. 120, 865–875 (1993)

    Article  CAS  Google Scholar 

  19. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004)

    Article  Google Scholar 

  20. Saxena, K. et al. Analysis of the physical properties and molecular modeling of Sec13: A WD repeat protein involved in vesicular traffic. Biochemistry 35, 15215–15221 (1996)

    Article  CAS  Google Scholar 

  21. Musacchio, A. et al. Functional organization of clathrin in coats: combining electron cryomicroscopy and X-ray crystallography. Mol. Cell 3, 761–770 (1999)

    Article  CAS  Google Scholar 

  22. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004)

    Article  CAS  ADS  Google Scholar 

  23. Shaywitz, D. A., Espenshade, P. J., Gimeno, R. E. & Kaiser, C. A. COPII subunit interactions in the assembly of the vesicle coat. J. Biol. Chem. 272, 25413–25416 (1997)

    Article  CAS  Google Scholar 

  24. Smith, C. J., Grigorieff, N. & Pearse, B. M. Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors. EMBO J. 17, 4943–4953 (1998)

    Article  CAS  Google Scholar 

  25. Jones, B. et al. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nature Genet. 34, 29–31 (2003)

    Article  CAS  Google Scholar 

  26. Mironov, A. A. et al. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev. Cell 5, 583–594 (2003)

    Article  CAS  Google Scholar 

  27. Suloway, C. et al. Automated molecular microscopy: The new Leginon system. J. Struct. Biol. 151, 41–60 (2005)

    Article  CAS  Google Scholar 

  28. Zhu, Y., Carragher, B. & Potter, C. S. Improving Template Matching Based Particle Selection for Cryo-electron Microscopy (IEEE ISBI04 Conference, Arlington, Virginia, 2004)

    Google Scholar 

  29. Mallick, S. P., Carragher, B., Potter, C. S. & Kriegman, D. J. ACE: Automated CTF Estimation. Ultramicroscopy 104, 8–29 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These studies are supported by NIH grants to W.E.B., C.S.P. and B.C. S.M.S. is a recipient of an NIH Postdoctoral Fellowship. C.G. is a recipient of a Cystic Fibrosis Foundation Postdoctoral Research Fellowship. We thank G. Cantin and J. Venable for LC-MS/MS analysis, and J. T. Weissman, K. Straley and S. J. Lloyd for setting up or helping with recombinant expression of the human Sec13/31 complex in baculovirus-infected insect cells. This is TSRI manuscript number 17546-CB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bridget Carragher or William E. Balch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods and Supplementary Figure Legends. (DOC 44 kb)

Supplementary Figure 1

Further initial analyses of the self-assembled Sec13/31 cages. (PDF 537 kb)

Supplementary Figure 2

Single particle analysis of the Sec13/31 cages in vitreous ice. (PDF 1587 kb)

Supplementary Figure 3

Further potential geometries consistent with a Sec13/31 lattice. (PDF 467 kb)

Supplementary Video

The reconstructed cage structure has a diameter of 600 A ° along its longest diagonal, the length of an edge is 300 Å, and the width of an edge is 40 Å. (MOV 3354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stagg, S., Gürkan, C., Fowler, D. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006). https://doi.org/10.1038/nature04339

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04339

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing