Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites

Abstract

A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu–O bonds) directions in momentum space, generally assumed to be linked to the ‘d-wave’ symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction1. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite ‘Fermi arcs’2. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity3 or by invoking orders which are natural competitors of d-wave superconductors4,5. Here we report experimental evidence that a very similar pseudogap state with a nodal–antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La1.2Sr1.8Mn2O7. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Data collected along the (0,0)–(π,π) nodal direction at various magnifications.
Figure 2: Dispersion of the e gband.
Figure 4: Nodal–antinodal dichotomy in momentum space.
Figure 3: Fermi surface topology.
Figure 5: Temperature-dependent evolution of the nodal quasiparticle.

Similar content being viewed by others

References

  1. Shen, Z.-X. et al. Anomalously large g ap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 70, 1553–1556 (1993)

    Article  ADS  CAS  Google Scholar 

  2. Damascelli, A., Shen, Z. X. & Hussain, Z. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Honerkamp, C. & Lee, P. A. Staggered flux vortices and the superconducting transition in the layered cuprates. Phys. Rev. Lett. 92, 177002 (2004)

    Article  ADS  Google Scholar 

  5. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    Article  ADS  Google Scholar 

  6. Tokura, Y. Colossal Magnetoresistive Oxides Ch. 1, 1 (Gordon & Breach Science, Amsterdam, 2000)

    Book  Google Scholar 

  7. Dagotto, E. Nanoscale Phase Separation And Magnetoresistance (series eds Cardona, M. et al.) Ch. 2, 13 (Springer, Berlin/Heidelberg/New York, 2002).

  8. Huang, X. Y., Mryasov, O. N.,, Novikov, D. L. & Freeman, A. J. Electronic and magnetic properties of layered colossal magnetoresistive oxides: La1+2xSr2–2xMn2O7 . Phys. Rev. B 62, 13318–13322 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Dessau, D. S. et al. k-Dependent electronic structure, a large “ghost” Fermi surface, and a pseudogap in a layered magnetoresistive oxide. Phys. Rev. Lett. 81, 192–195 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Saitoh, T. et al. Temperature-dependent pseudogaps in colossal magnetoresistive oxides. Phys. Rev. B 62, 1039–1043 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Chuang, Y.-D., Gromko, A. D., Dessau, D. S., Kimura, T. & Tokura, Y. Fermi surface nesting and nanoscale fluctuating charge/orbital ordering in colossal magnetoresistive oxides. Science 292, 1509–1513 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Shen, K. M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2-xNaxCuO2Cl2 . Science 307, 901–904 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Wells, B. O. et al. E versus k relations and many body effects in the model insulating copper oxide Sr2CuO2Cl2 . Phys. Rev. Lett. 74, 964–967 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Ronning, F. et al. Anomalous high-energy dispersion in angle-resolved photoemission spectra from the insulating cuprate Ca2CuO2Cl2 . Phys. Rev. B 71, 094518 (2005)

    Article  ADS  Google Scholar 

  15. Shen, K. M. et al. Missing quasiparticles and the chemical potential puzzle in the doping evolution of the cuprate superconductors. Phys. Rev. Lett. 93, 267002 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Mishchenko, A. S. & Nagaosa, N. Electron-phonon coupling and a polaron in the t–j model: from the weak to the strong coupling regime. Phys. Rev. Lett. 93, 036402 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Rosch, O. & Gunnarsson, O. Dispersion of incoherent spectral features in systems with strong electron-phonon coupling. Eur. Phys. J. B 43, 11–18 (2005)

    Article  ADS  Google Scholar 

  18. Perebeinos, V. & Allen, P. B. Franck–Condon-broadened angle-resolved photoemission spectra predicted in LaMnO3 . Phys. Rev. Lett. 85, 5178–5181 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Englesberg, S. & Schrieffer, J. R. Coupled electron-phonon system. Phys. Rev. 131, 993–1008 (1963)

    Article  ADS  Google Scholar 

  20. Yoshida, T. et al. Metallic behaviour of lightly doped La2–xSrxCuO4 with a Fermi surface forming an arc. Phys. Rev. Lett. 91, 027001 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Kaminski, A. et al. Renormalization of spectral line shape and dispersion below Tc in Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 86, 1070–1073 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Moritomo, Y., Asamitsu, A., Kuwahara, H. & Tokura, Y. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380, 141–144 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Palstra, T. T. M. et al. Transport mechanisms in doped LaMnO3: evidence for polaron formation. Phys. Rev. B 56, 5104–5107 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Vasiliu-Doloc, L. et al. Charge melting and polaron collapse in La1.2Sr1.8Mn2O7 . Phys. Rev. Lett. 83, 4393–4396 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Campbell, B. J. et al. Structure of nanoscale polaron correlations in La1.2Sr1.8Mn2O7 . Phys. Rev. B 65, 014427 (2001)

    Article  ADS  Google Scholar 

  26. Millis, A. J., Littlewood, P. B. & Shraiman, B. I. Double exchange alone does not explain the resistivity of La1-xSrxMnO3 . Phys. Rev. Lett. 74, 5144–5147 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2 . Nature 430, 1001–1005 (2005)

    Article  ADS  Google Scholar 

  28. Mitchell, J. F. et al. Charge delocalization and structural response in layered La1.2Sr1.8Mn2O7: Enhanced distortion in the metallic regime. Phys. Rev. B 55, 63–66 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Freeland, J. W. et al. Full bulk polarization and intrinsic tunnel barriers at the surface of layered manganites. Nature Mater. 4, 62–67 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The work at the ALS and SSRL is supported by the DOE Office of Basic Energy Science, Division of Material Science. The work at Stanford is also supported by an NSF grant and an ONR grant. The work at Argonne National Laboratory is supported by the US Department of Energy Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Mannella or Z.-X. Shen.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannella, N., Yang, W., Zhou, X. et al. Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites. Nature 438, 474–478 (2005). https://doi.org/10.1038/nature04273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04273

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing