Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Controlled microfluidic interfaces

Abstract

The microfabrication technologies of the semiconductor industry have made it possible to integrate increasingly complex electronic and mechanical functions, providing us with ever smaller, cheaper and smarter sensors and devices. These technologies have also spawned microfluidics systems for containing and controlling fluid at the micrometre scale, where the increasing importance of viscosity and surface tension profoundly affects fluid behaviour. It is this confluence of available microscale engineering and scale-dependence of fluid behaviour that has revolutionized our ability to precisely control fluid/fluid interfaces for use in fields ranging from materials processing and analytical chemistry to biology and medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microfluidic interfaces provide unique functionality.
Figure 2: Droplets as containers.
Figure 3: Pinned interfaces.
Figure 4: Interfacial reactions.

Similar content being viewed by others

References

  1. Vogel, S. Life in Moving Fluids (Princeton Univ. Press, Princeton, New Jersey, 1996).

    Google Scholar 

  2. Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 ( 1977).

    Article  ADS  Google Scholar 

  3. Hagen, G. Ueber die Bewegung des Wassers in engen cylindrischen Rohren. Ann. Phys. Chem. 46, 423–442 ( 1839).

    ADS  Google Scholar 

  4. Poiseuille, J. L. M. Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres. Comptes Rendus 11, 961–967 ( 1841).

    Google Scholar 

  5. Navier, L. M. H. Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. 6, 389–440 ( 1827).

    Google Scholar 

  6. Stokes, G. G. On the theories of the internal friction of fluids in motion. Trans. Camb. Phil. Soc. 8, 287–319 ( 1845).

    Google Scholar 

  7. Taylor, G. I. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186–203 ( 1953).

    ADS  CAS  Google Scholar 

  8. Petersen, K. E. Silicon as a mechanical material. Proc. IEEE 70, 420–457 ( 1982).

    ADS  CAS  Google Scholar 

  9. Harrison, D. J. et al. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261, 895–897 ( 1993).

    ADS  CAS  PubMed  Google Scholar 

  10. Jacobson, S. C., Hergenroder, R., Koutny, L. B. & Ramsey, J. M. High-speed separations on a microchip. Anal. Chem. 66, 1114–1118 ( 1994).

    CAS  Google Scholar 

  11. Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical-analysis systems: a novel concept for chemical sensing. Sensors Actuators B 1, 244–248 ( 1990).

    CAS  Google Scholar 

  12. Hansen, C. L., Skordalakes, E., Berger, J. M. & Quake, S. R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl Acad. Sci. USA 99, 16531–16536 ( 2002).

    ADS  CAS  PubMed  Google Scholar 

  13. Kobayashi, J. et al. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science 304, 1305–1308 ( 2004).

    ADS  CAS  PubMed  Google Scholar 

  14. Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 ( 1992).

    ADS  CAS  PubMed  Google Scholar 

  15. Zhang, T., Chakrabarty, K. & Fair, R. B. Microelectrofluidic Systems: Modeling and Simulation (CRC, Boca Raton, 2002).

    Google Scholar 

  16. Lee, J. & Kim, C. J. Surface-tension-driven microactuation based on continuous electrowetting. J. Microelectromech. Sys. 9, 171–180 ( 2000).

    CAS  Google Scholar 

  17. Moorthy, J., Khoury, C., Moore, J. S. & Beebe, D. J. Active control of electroosmotic flow in microchannels using light. Sensors Actuators B 75, 223–229 ( 2001).

    CAS  Google Scholar 

  18. Gascoyne, P. R. C. et al. Dielectrophoresis-based programmable fluidic processors. Lab Chip 4, 299–309 ( 2004).

    CAS  PubMed  Google Scholar 

  19. Pollack, M. G., Fair, R. B. & Shenderov, A. D. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77, 1725–1726 ( 2000).

    ADS  CAS  Google Scholar 

  20. Wheeler, A. R., Moon, H., Kim, C. J., Loo, J. A. & Garrell, R. L. Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 76, 4833–4838 ( 2004).

    CAS  PubMed  Google Scholar 

  21. Srinivasan, V., Pamula, V. K. & Fair, R. B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 ( 2004).

    CAS  PubMed  Google Scholar 

  22. Joseph, D. D. & Renardy, Y. in Fundamentals of Two-Fluid Dynamics (eds Antman, S., Marsden, J. E., Sirovich, L. & Wiggins, S.) (Springer, New York, 1993).

    MATH  Google Scholar 

  23. Bird, R. B., Stewart, W. E. & Lightfoot, E. N. Transport Phenomena (Wiley, New York, 2001).

    Google Scholar 

  24. Koschmieder, E. L. in Bénard Cells and Taylor Vortices (eds Ablowitz, M. J. et al.) (Cambridge Univ. Press, Cambridge, 1993).

    MATH  Google Scholar 

  25. Gallardo, B. S. et al. Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–60 ( 1999).

    ADS  CAS  PubMed  Google Scholar 

  26. Prins, M. W. J., Welters, W. J. J. & Weekamp, J. W. Fluid control in multichannel structures by electrocapillary pressure. Science 291, 277–280 ( 2001).

    ADS  CAS  PubMed  Google Scholar 

  27. Adamson, A. W. & Gast, A. P. Physical Chemistry of Surfaces (Wiley, New York, 1997).

    Google Scholar 

  28. Trimmer, W. S. N. Microrobots and micromechanical systems. Sensors Actuators 19, 267–287 ( 1989).

    Google Scholar 

  29. Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 ( 2004).

    ADS  MATH  Google Scholar 

  30. Squires, T. M. & Quake, S. R. Microfluidics: fluid physics on the nanoliter scale. Rev. Mod. Phys. (in the press).

  31. Rayleigh, L. On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 71–97 ( 1879).

    Google Scholar 

  32. Taylor, G. I. The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501–523 ( 1934).

    ADS  CAS  Google Scholar 

  33. Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 ( 2001).

    ADS  CAS  PubMed  Google Scholar 

  34. Okushima, S., Nisisako, T., Torii, T. & Higuchi, T. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20, 9905–9908 ( 2004).

    CAS  PubMed  Google Scholar 

  35. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 ( 2005).

    ADS  CAS  PubMed  Google Scholar 

  36. Tan, Y. C., Fisher, J. S., Lee, A. I., Cristini, V. & Lee, A. P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4, 292–298 ( 2004).

    CAS  PubMed  Google Scholar 

  37. Link, D. R., Anna, S. L., Weitz, D. A. & Stone, H. A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503 ( 2004).

    ADS  CAS  PubMed  Google Scholar 

  38. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using ‘flow focusing’ in microchannels. Appl. Phys. Lett. 82, 364–366 ( 2003).

    ADS  CAS  Google Scholar 

  39. Xu, Q. & Nakajima, M. The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Appl. Phys. Lett. 85, 3726–3728 ( 2004).

    ADS  CAS  Google Scholar 

  40. Jeong, W. J. et al. Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems. Langmuir 21, 3738–3741 ( 2005).

    CAS  PubMed  Google Scholar 

  41. Xu, S. et al. Generation of monodisperse particles by using microfluidics:control over size, shape, and composition. Angew. Chem. Intl Edn Engl. 43, 2–5 ( 2004).

    Google Scholar 

  42. Bringer, M. R., Gerdts, C. J., Song, H., Tice, J. D. & Ismagilov, R. F. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil. Trans. R. Soc. Lond. A 362, 1087–1104 ( 2004).

    ADS  CAS  Google Scholar 

  43. Song, H. & Ismagilov, R. F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc. 125, 14613–14619 ( 2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4, 316–321 ( 2004).

    CAS  PubMed  Google Scholar 

  45. Zheng, B., Tice, J. D., Roach, L. S. & Ismagilov, R. F. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew. Chem. Intl Edn Engl. 43, 2508–2511 ( 2004).

    CAS  Google Scholar 

  46. Dickinson, E. & Matsumura, Y. Proteins at liquid interfaces: role of the molten globule state. Colloids Surf. B 3, 1–17 ( 1994).

    CAS  Google Scholar 

  47. Roach, L. S., Song, H. & Ismagilov, R. F. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal. Chem. 77, 785–796 ( 2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, G., An, Z. H., Tao, C. & Li, J. B. Microcapsule assembly of human serum albumin at the liquid/liquid interface by the pendent drop technique. Langmuir 20, 8401–8403 ( 2004).

    CAS  PubMed  Google Scholar 

  49. Lyuksyutov, I. F., Naugle, D. G. & Rathnayaka, K. D. D. On-chip manipulation of levitated femtodroplets. Appl. Phys. Lett. 85, 1817–1819 ( 2004).

    ADS  CAS  Google Scholar 

  50. Kotz, K. T., Noble, K. A. & Faris, G. W. Optical microfluidics. Appl. Phys. Lett. 85, 2658–2660 ( 2004).

    ADS  CAS  Google Scholar 

  51. Dorvee, J. R., Derfus, A. M., Bhatia, S. N. & Sailor, M. J. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nature Mater. 3, 896–899 ( 2004).

    ADS  CAS  Google Scholar 

  52. Zhao, B., Moore, J. S. & Beebe, D. J. Surface-directed liquid flow inside microchannels. Science 291, 1023–1026 ( 2001).

    ADS  CAS  PubMed  Google Scholar 

  53. Hibara, A. et al. Surface modification method of microchannels for gas-liquid two-phase flow in microchips. Anal. Chem. 77, 943–947 ( 2005).

    CAS  PubMed  Google Scholar 

  54. Zhao, B., Viernes, N. O. L., Moore, J. S. & Beebe, D. J. Control and applications of immiscible liquids in microchannels. J. Am. Chem. Soc. 124, 5284–5285 ( 2002).

    CAS  PubMed  Google Scholar 

  55. Hibara, A. et al. Stabilization of liquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of microchannels. Anal. Chem. 74, 1724–1728 ( 2002).

    CAS  PubMed  Google Scholar 

  56. Surmeian, M. et al. Three-layer flow membrane system on a microchip for investigation of molecular transport. Anal. Chem. 74, 2014–2020 ( 2002).

    CAS  PubMed  Google Scholar 

  57. Maruyama, T. et al. Enzymatic degradation of p-chlorophenol in a two-phase flow microchannel system. Lab Chip 4, 159–159 ( 2004).

    CAS  Google Scholar 

  58. Maruyama, T. et al. Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device. Analyst 129, 1008–1013 ( 2004).

    ADS  CAS  Google Scholar 

  59. Maruyama, T. et al. Liquid membrane operations in a microfluidic device for selective separation of metal ions. Anal. Chem. 76, 4495–4500 ( 2004).

    CAS  PubMed  Google Scholar 

  60. Viernes, N. O. L. & Moore, J. S. in Proc. 7th Int. Conf. Micro Total Analysis Systems (eds Nothrup, M. A., Jensen, K. F. & Harrison, D. J.) 1041–1044 (Transducers Research Foundation, San Diego/Squaw Valley, 2003).

    Google Scholar 

  61. Hisamoto, H. et al. Chemicofunctional membrane for integrated chemical processes on a microchip. Anal. Chem. 75, 350–354 ( 2003).

    CAS  PubMed  Google Scholar 

  62. Bauer, J. A., Saif, T. A. & Beebe, D. J. Surface tension driven formation of microstructures. J. Microelectromech. Syst. 13, 553–558 ( 2004).

    Google Scholar 

  63. Garik, P., Hetrick, J., Orr, B., Barkey, D. & Benjacob, E. Interfacial cellular mixing and a conjecture on global deposit morphology. Phys. Rev. Lett. 66, 1606–1609 ( 1991).

    ADS  CAS  PubMed  Google Scholar 

  64. Anderson, D. M., McFadden, G. B. & Wheeler, A. A. Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 ( 1998).

    ADS  MathSciNet  MATH  Google Scholar 

  65. Ismagilov, R. F., Stroock, A. D., Kenis, P. J. A., Whitesides, G. & Stone, H. A. Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl. Phys. Lett. 76, 2376–2378 ( 2000).

    ADS  CAS  Google Scholar 

  66. Giddings, J. C., Yang, F. J. F. & Myers, M. N. Flow field-flow fractionation: versatile new separation method. Science 193, 1244–1245 ( 1976).

    ADS  CAS  PubMed  Google Scholar 

  67. Williams, P. S., Levin, S., Lenczycki, T. & Giddings, J. C. Continuous split fractionation based on a diffusion mechanism. Ind. Eng. Chem. Res. 31, 2172–2181 ( 1992).

    CAS  Google Scholar 

  68. Giddings, J. C. Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260, 1456–1465 ( 1993).

    ADS  CAS  PubMed  Google Scholar 

  69. Brody, J. P. & Yager, P. Diffusion-based extraction in a microfabricated device. Sensors Actuators A 58, 13–18 ( 1997).

    CAS  Google Scholar 

  70. Brody, J. P., Yager, P., Goldstein, R. E. & Austin, R. H. Biotechnology at low Reynolds numbers. Biophys. J. 71, 3430–3441 ( 1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weigl, B. H. & Yager, P. Silicon-microfabricated diffusion-based optical chemical sensor. Sensors Actuators B 39, 452–457 ( 1997); Microfluidics: microfluidic diffusion-based separation and detection. Science 283, 346–347 ( 1999).

    CAS  Google Scholar 

  72. Hatch, A. et al. A rapid diffusion immunoassay in a T-sensor. Nature Biotechnol. 19, 461–465 ( 2001).

    CAS  Google Scholar 

  73. Costin, C. D., McBrady, A. D., McDonnell, M. E. & Synovec, R. E. Theoretical modeling and experimental evaluation of a microscale molecular mass sensor. Anal. Chem. 76, 2725–2733 ( 2004).

    CAS  PubMed  Google Scholar 

  74. Kamholz, A. E., Weigl, B. H., Finlayson, B. A. & Yager, P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal. Chem. 71, 5340–5347 ( 1999).

    CAS  PubMed  Google Scholar 

  75. Ferrigno, R., Stroock, A. D., Clark, T. D., Mayer, M. & Whitesides, G. M. Membraneless vanadium redox fuel cell using laminar flow. J. Am. Chem. Soc. 124, 12930–12931 ( 2002).

    CAS  PubMed  Google Scholar 

  76. Choban, E. R., Markoski, L. J., Wieckowski, A. & Kenis, P. J. A. Microfluidic fuel cell based on laminar flow. J. Power Sources 128, 54–60 ( 2004).

    ADS  CAS  Google Scholar 

  77. Jeon, N. L. et al. Generation of solution and surface gradients using microfluidic systems. Langmuir 16, 8311–8316 ( 2000).

    CAS  Google Scholar 

  78. Dertinger, S. K. W., Chiu, D. T., Jeon, N. L. & Whitesides, G. M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73, 1240–1246 ( 2001).

    CAS  Google Scholar 

  79. Jeon, N. L. et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature Biotechnol. 20, 826–830 ( 2002).

    CAS  Google Scholar 

  80. Mao, H. B., Cremer, P. S. & Manson, M. D. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl Acad. Sci. USA 100, 5449–5454 ( 2003).

    ADS  CAS  PubMed  Google Scholar 

  81. Sawano, A., Takayama, S., Matsuda, M. & Miyawaki, A. Lateral propagation of EGF signaling after local stimulation is dependent on receptor density. Dev. Cell 3, 245–257 ( 2002).

    CAS  PubMed  Google Scholar 

  82. Mao, H. B., Holden, M. A., You, M. & Cremer, P. S. Reusable platforms for high-throughput on-chip temperature gradient assays. Anal. Chem. 74, 5071–5075 ( 2002).

    CAS  PubMed  Google Scholar 

  83. Ross, D. & Locascio, L. E. Microfluidic temperature gradient focusing. Anal. Chem. 74, 2556–2564 ( 2002).

    CAS  PubMed  Google Scholar 

  84. Pearce, T. M., Wilson, J. A., Oakes, S. G., Chiu, S. Y. & Williams, J. C. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture. Lab Chip 5, 97–101 ( 2005).

    CAS  PubMed  Google Scholar 

  85. Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H. & Ismagilov, R. F. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–1138 ( 2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kenis, P. J. A., Ismagilov, R. F. & Whitesides, G. M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285, 83–85 ( 1999).

    CAS  PubMed  Google Scholar 

  87. Kenis, P. J. A. et al. Fabrication inside microchannels using fluid flow. Acc. Chem. Res. 33, 841–847 ( 2000).

    CAS  PubMed  Google Scholar 

  88. Jeong, W. et al. Hydrodynamic microfabrication via ‘on the fly’ photopolymerization of microscale fibers and tubes. Lab Chip 4, 576–580 ( 2004).

    CAS  PubMed  Google Scholar 

  89. Munson, M. S., Hasenbank, M. S., Fu, E. & Yager, P. Suppression of non-specific adsorption using sheath flow. Lab Chip 4, 438–445 ( 2004).

    CAS  PubMed  Google Scholar 

  90. Beebe, D., Wheeler, M., Zeringue, H., Walters, E. & Raty, S. Microfluidic technology for assisted reproduction. Theriogenology 57, 125–135 ( 2002).

    CAS  PubMed  Google Scholar 

  91. Yu, H., Meyvantsson, I., Shkel, I. A. & Beebe, D. Dimension dependent cell behavior in microenvironments. Lab Chip ( 2005).

  92. Raty, S. et al. Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4, 186–190 ( 2004).

    CAS  PubMed  Google Scholar 

  93. Ribbeck, K. & Gorlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 ( 2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Moorthy and D. Kim for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Beebe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atencia, J., Beebe, D. Controlled microfluidic interfaces. Nature 437, 648–655 (2005). https://doi.org/10.1038/nature04163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04163

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing