Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutual phase-locking of microwave spin torque nano-oscillators

Abstract

The spin torque1,2 effect that occurs in nanometre-scale magnetic multilayer devices can be used to generate steady-state microwave signals in response to a d.c. electrical current3,4,5,6,7,8. This establishes a new functionality for magneto-electronic structures that are more commonly used as magnetic field sensors and magnetic memory elements9. The microwave power emitted from a single spin torque nano-oscillator (STNO) is at present typically less than 1 nW. To achieve a more useful power level (on the order of microwatts), a device could consist of an array of phase coherent STNOs, in a manner analogous to arrays of Josephson junctions and larger semiconductor oscillators10,11,12. Here we show that two STNOs in close proximity mutually phase-lock—that is, they synchronize, which is a general tendency of interacting nonlinear oscillator systems13,14,15. The phase-locked state is distinct, characterized by a sudden narrowing of signal linewidth and an increase in power due to the coherence of the individual oscillators. Arrays of phase-locked STNOs could be used as nanometre-scale reference oscillators. Furthermore, phase control of array elements (phased array) could lead to nanometre-scale directional transmitters and receivers for wireless communications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and basic behaviour of a two-nano-contact device.
Figure 2: Locking behaviour.
Figure 3: Behaviour of individual oscillators.
Figure 4: Device power outputs.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 4212–4215 (2000)

    Article  Google Scholar 

  4. Tsoi, M. et al. Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406, 46–48 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 27201 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Covington, M., Al Haj Darwish, M., Ding, Y., Gokemeijer, N. J. & Seigler, M. Current-induced magnetization dynamics in current perpendicular to the plane spin valves. Phys. Rev. B 69, 184406 (2004)

    Article  ADS  Google Scholar 

  8. Krivorotov, I. N. et al. Time domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Benz, S. P. & Burroughs, C. J. Coherent emission from two dimensional Josephson junction arrays. Appl. Phys. Lett. 58, 2162–2164 (1991)

    Article  ADS  CAS  Google Scholar 

  11. Wengler, M. J., Guan, B. & Track, E. K. 190-GHz radiation from a quasioptical Josephson junction array. IEEE Trans. Microwave Theory Tech. 43, 984–988 (1995)

    Article  ADS  Google Scholar 

  12. Popovic, Z. B., Weikle, R. M., Kim, M. & Rutledge, D. B. A 100-MESFET planar grid oscillator. IEEE Microwave Theory Tech. 39, 193–200 (1991)

    Article  ADS  Google Scholar 

  13. Strogatz, S. Sync: The Emerging Science of Spontaneous Order 51, 116 (Hyperion, New York, 2003)

    Google Scholar 

  14. York, R. A. Nonlinear analysis of phase relationships in quasi-optical oscillator arrays. IEEE Trans. Microwave Theory Tech. 41, 1799–1809 (1993)

    Article  ADS  Google Scholar 

  15. Rezavi, B. A study of injection locking and pulling in oscillators. IEEE J. Solid State Circuits 39, 1415–1424 (2004)

    Article  ADS  Google Scholar 

  16. Wiesenfeld, K., Colet, P. & Strogatz, S. H. Synchronization transitions in a disordered Josephson series array. Phys. Rev. Lett. 76, 404–407 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Finnegan, T. F. & Wahlsten, S. Observation of coherent microwave radiation emitted by coupled Josephson junctions. Appl. Phys. Lett. 21, 541–544 (1972)

    Article  ADS  CAS  Google Scholar 

  18. Buck, J. & Buck, E. Mechanism of rhythmic synchronous flashing of fireflies. Science 159, 1319–1327 (1968)

    Article  ADS  CAS  Google Scholar 

  19. Bennet, M., Schatz, M. F., Rockwood, H. & Wiesenfeld, K. Huygens's clocks. Proc. R. Soc. Lond. A 458, 563–579 (2002)

    Article  MathSciNet  Google Scholar 

  20. Suhl, H. The nonlinear behaviour of ferrites at high microwave signal levels. Proc. Inst. Radio Engrs. 44, 1270–1284 (1956)

    CAS  Google Scholar 

  21. Rippard, W. H., Pufall, M. R., Kaka, S., Silva, T. J. & Russek, S. E. Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys. Rev. B 70, 100406 (2004)

    Article  ADS  Google Scholar 

  22. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  CAS  Google Scholar 

  23. Slonczewski, J. C. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261–L268 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Rippard, W. H., Pufall, M. R., Kaka, S., Silva, T. J. & Russek, S. E. Injection locking and phase control of spin transfer oscillators. Phys. Rev. Lett. 95, 067203 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Russek, S. E., McMichael, R. D., Donahue, M. J. & Kaka, S. in Spin Dynamics in Confined Magnetic Structures II (eds Hillebrands, B. & Ounadjela, K.) 93–156 (Springer, Berlin, 2003)

    Book  Google Scholar 

Download references

Acknowledgements

We thank P. Kabos and A. Kos for assistance with microwave apparatus, and A. Slavin, M. Stiles, T. Gerrits and R. Goldfarb for discussions. This work was partly supported by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehzaad Kaka.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaka, S., Pufall, M., Rippard, W. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005). https://doi.org/10.1038/nature04035

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing