Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lost and found dark matter in elliptical galaxies

Abstract

There is strong evidence that the mass of the Universe is dominated by dark matter, which exerts gravitational attraction but whose exact nature is unknown. In particular, all galaxies are believed to be embedded in massive haloes of dark matter1,2. This view has recently been challenged by the observation of surprisingly low random stellar velocities in the outskirts of ordinary elliptical galaxies, which has been interpreted as indicating a lack of dark matter3,4. Here we show that the low velocities are in fact compatible with galaxy formation in dark-matter haloes. Using numerical simulations of disk-galaxy mergers5,6, we find that the stellar orbits in the outer regions of the resulting ellipticals are very elongated. These stars were torn by tidal forces from their original galaxies during the first close passage and put on outgoing trajectories. The elongated orbits, combined with the steeply falling density profile of the observed tracers, explain the observed low velocities even in the presence of large amounts of dark matter. Projection effects when viewing a triaxial elliptical can lead to even lower observed velocities along certain lines of sight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional profiles of the simulated merger remnants.
Figure 2: Projected profiles: simulated galaxies versus observations.

Similar content being viewed by others

References

  1. Sofue, Y. & Rublin, V. Rotation curves of spiral galaxies. Annu. Rev. Astron. Astrophys. 39, 137–174 (2001)

    Article  ADS  CAS  Google Scholar 

  2. White, S. D. M. & Rees, M. J. Core condensation in heavy halos—A two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    Article  ADS  Google Scholar 

  3. Méndez, R. H. et al. Detection, photometry, and slitless radial velocities of 535 planetary nebulae in the flattened elliptical galaxy NGC 4697. Astrophys. J. 563, 135–150 (2001)

    Article  ADS  Google Scholar 

  4. Romanowsky, A. J. et al. A dearth of dark matter in ordinary elliptical galaxies. Science 301, 1696–1698 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Cox, T. J. Simulations of Galaxy Mergers: Star Formation and Feedback. PhD thesis, UC Santa Cruz (2004); http://physics.ucsc.edu/~tj/work/thesis/

    Google Scholar 

  6. Cox, T. J., Jonsson, P., Primack, J. R. & Somerville, R. S. The effects of feedback in simulations of disk galaxy major mergers. Preprint at http://arXiv.org/astro-ph/0503201 (2005).

  7. Navarro, J. F., Frenk, C. S. & White, S. D. M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 490, 493–510 (1997)

    Article  ADS  Google Scholar 

  8. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984)

    Article  ADS  CAS  Google Scholar 

  9. Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39–55 (1986)

    Article  ADS  CAS  Google Scholar 

  10. Fall, S. M. Dissipation, merging and the rotation of galaxies. Nature 281, 200–202 (1979)

    Article  ADS  Google Scholar 

  11. Mathews, W. G. & Brighenti, F. Hot gas in and around elliptical galaxies. Annu. Rev. Astron. Astrophys. 41, 191–239 (2003)

    Article  ADS  Google Scholar 

  12. Keeton, C. R. Cold dark matter and strong gravitational lensing: concord or conflict? Astrophys. J. 561, 46–60 (2001)

    Article  ADS  Google Scholar 

  13. Mamon, G. A. & Lokas, E. L. Dark matter in elliptical galaxies: II. Estimating the mass within the virial radius. Mon. Not. R. Astron. Soc. (in the press); preprint at http://arXiv.org/astro-ph/0405491 (2005).

  14. Napolitano, N. R. et al. Mass-to-light ratio gradients in early-type galaxy haloes. Mon. Not. R. Astron. Soc. 357, 691–706 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Milgrom, M. & Sanders, R. H. Modified newtonian dynamics and the “dearth of dark matter in ordinary elliptical galaxies”. Astrophys. J. Lett. 599, L25–L28 (2003)

    Article  ADS  Google Scholar 

  16. Valluri, M., Merritt, D. & Emsellem, E. Difficulties with recovering the masses of supermassive black holes from stellar kinematical data. Astrophys. J. 602, 66–92 (2004)

    Article  ADS  Google Scholar 

  17. Binney, J. & Tremaine, S. Galactic Dynamics Ch. 4.2.d, eq. 4–55 (Princeton Univ. Press, Princeton, NJ, 1987)

    MATH  Google Scholar 

  18. de Vaucouleurs, G. Recherches sur les Nebuleuses Extragalactiques. Ann. Astrophys. 11, 247–287 (1948)

    ADS  Google Scholar 

  19. Lima Neto, G. B., Gerbal, D. & Marquez, I. The specific entropy of elliptical galaxies: an explanation for profile-shape distance indicators. Mon. Not. R. Astron. Soc. 309, 481–495 (1999)

    Article  ADS  Google Scholar 

  20. Bullock, J. S. et al. Profiles of dark haloes: evolution, scatter and environment. Mon. Not. R. Astron. Soc. 321, 559–575 (2001)

    Article  ADS  Google Scholar 

  21. Springel, V., Yoshida, N. & White, S. D. M. GADGET: a code for collisionless and gas dynamical cosmological simulations. New Astron. 6, 79–117 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Gnedin, O. Y., Kravtsov, A. V., Klypin, A. A. & Nagai, D. Response of dark matter halos to condensation of baryons: cosmological simulations and improved adiabatic contraction model. Astrophys. J. 616, 16–26 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Goudfrooij, P. et al. Interstellar matter in Shapley-Ames elliptical galaxies. I. Multicolour CCD surface photometry. Astron. Astrophys. Suppl. 104, 179–231 (1994)

    ADS  Google Scholar 

  24. de Vaucouleurs, G. & Capaccioli, M. Luminosity distribution in galaxies. I—The elliptical galaxy NGC 3379 as a luminosity distribution standard. Astrophys. J. Suppl. 40, 699–731 (1979)

    Article  ADS  CAS  Google Scholar 

  25. Peletier, R. F., Davies, R. L., Illingworth, G. D., Davis, L. E. & Cawson, M. CCD surface photometry of galaxies with dynamical data. II—UBR photometry of 39 elliptical galaxies. Astron. J. 100, 1091–1142 (1990)

    Article  ADS  Google Scholar 

  26. Marigo, P., Girardi, L., Weiss, A., Groenewegen, M. A. T. & Chiosi, C. Evolution of planetary nebulae. II. Population effects on the bright cut-off of the PNLF. Astron. Astrophys. 423, 995–1015 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Peng, E. W., Ford, H. C. & Freeman, K. C. The planetary nebula system and dynamics in the outer halo of NGC 5128. Astrophys. J. 602, 685–704 (2004)

    Article  ADS  Google Scholar 

  28. Sáiz, A., Domínguez-Tenreiro, R. & Serna, A. Elliptical galaxies at z = 0 from self-consistent hydrodynamical simulations: comparison with Sloan Digital Sky Survey structural and kinematical data. Astrophys. J. Lett. 601, L131–L134 (2004)

    Article  ADS  Google Scholar 

  29. Abadi, M. G, Navarro, J. F. & Steinmetz, M. Stars beyond galaxies: The origin of extended luminous halos around galaxies. Preprint at http://arXiv/astro-ph/0506659 (2005)

  30. Côté, P. et al. Dynamics of the globular cluster system associated with M87 (NGC 4486). II. Analysis. Astrophys. J. 559, 828–850 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with M. Beasley, A. Burkert, K. Gebhardt, J. Navarro, A. Romanowsky and his group, and assistance from M. Covington. This research has been supported by the Israel Science Foundation and by NASA and NSF at UCSC. The simulations were run at NERSC. A.D. acknowledges a Miller Professorship at UC Berkeley, support from UCO/Lick Observatory, and a Blaise Pascal International Chair in Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dekel.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains an extension of the Letter to Nature, aimed at providing more detailed support to the results reported in the Letter. This file contains Supplementary Results, Supplementary Discussion, Supplementary Figures S1–S11 and additional references. (PDF 468 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekel, A., Stoehr, F., Mamon, G. et al. Lost and found dark matter in elliptical galaxies. Nature 437, 707–710 (2005). https://doi.org/10.1038/nature03970

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03970

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing