Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre

Abstract

Though critically important in sustaining the ocean's biological pump, the cycling of nutrients in the subtropical gyres is poorly understood. The supply of nutrients to the sunlit surface layer of the ocean has traditionally been attributed solely to vertical processes. However, horizontal advection may also be important in establishing the availability of nutrients. Here we show that the production and advection of North Atlantic Subtropical Mode Water introduces spatial and temporal variability in the subsurface nutrient reservoir beneath the North Atlantic subtropical gyre. As the mode water is formed, its nutrients are depleted by biological utilization. When the depleted water mass is exported to the gyre, it injects a wedge of low-nutrient water into the upper layers of the ocean. Contrary to intuition, cold winters that promote deep convective mixing and vigorous mode water formation may diminish downstream primary productivity by altering the subsurface delivery of nutrients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the mean circulation of the warm water (> 17 °C) of the North Atlantic.
Figure 2: Nitrate (open symbols) and temperature (filled symbols) as a function of depth.
Figure 3: Properties of WOCE section A22 in August 1997.
Figure 4: Nitrate concentration versus PV at the PV minima over the density range 1026.45–1026.55 kg m-3.
Figure 5: Properties of the North Atlantic subtropical gyre.

Similar content being viewed by others

References

  1. Mann, K. H. & Lazier, J. R. N. Dynamics of Marine Ecosystems (Blackwell Science, Cambridge, Massachusetts, 1996)

    Google Scholar 

  2. Lewis, M. R., Harrison, W. G., Oakey, N. S., Hebert, D. & Platt, T. Vertical nitrate fluxes in the oligotrophic ocean. Science 234, 870–873 (1986)

    Article  ADS  CAS  Google Scholar 

  3. Menzel, D. W. & Ryther, J. H. Annual variations in primary productivity of the Sargasso Sea off Bermuda. Deep-Sea Res. I 7, 282–288 (1961)

    ADS  Google Scholar 

  4. Gruber, N., Keeling, C. D. & Bates, N. R. Interannual variability in the North Atlantic Ocean carbon sink. Science 298, 2374–2378 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Lewis, M. R., Kuring, N. & Yentsch, C. Global patterns of ocean transparency: Implications for the new production of the open ocean. J. Geophys. Res. 93, 6847–6856 (1988)

    Article  ADS  Google Scholar 

  6. McGillicuddy, D. J. & Robinson, A. R. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I 44, 1427–1450 (1997)

    Article  CAS  Google Scholar 

  7. Oschlies, A. & Garcon, V. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394, 266–269 (1998)

    Article  ADS  Google Scholar 

  8. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Talley, L. D. & Raymer, M. E. Eighteen Degree Water variability. J. Mar. Res. 40(suppl.), 757–775 (1982)

    Google Scholar 

  10. McCartney, M. S. The subtropical recirculation of Mode Waters. J. Mar. Res. 40, 427–464 (1982)

    Google Scholar 

  11. Worthington, L. V. On the North Atlantic Circulation (Johns Hopkins University Press, Baltimore, Maryland, 1976)

    Google Scholar 

  12. Siegel, D. A., Doney, S. C. & Yoder, J. A. The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis. Science 296, 730–733 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Pelegrí, J. L. & Csanady, G. T. Nutrient transport and mixing in the Gulf Stream. J. Geophys. Res. 96, 2577–2583 (1991)

    Article  ADS  Google Scholar 

  14. Joyce, T., Deser, C. & Spall, M. A. The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation. J. Clim. 13, 2550–2569 (2000)

    Article  ADS  Google Scholar 

  15. Talley, L. D. North Atlantic circulation and variability, reviewed for the CNLS conference. Physica D 98, 625–646 (1996)

    Article  ADS  Google Scholar 

  16. Dickson, R., Lazier, J., Meincke, J., Rhines, P. & Swift, J. Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr. 38, 241–295 (1996)

    Article  ADS  Google Scholar 

  17. McClain, C. R., Signorini, S. R. & Christian, J. R. Subtropical gyre variability observed by ocean-colour satellites. Deep-sea Res. II 51, 281–301 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Williams, R. G. & Follows, M. J. The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep-Sea Res. I 45, 461–489 (1998)

    Article  CAS  Google Scholar 

  19. McGillicuddy, D. J. et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 419, 263–266 (1998)

    Article  ADS  Google Scholar 

  20. Fratantoni, D. M. North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters. J. Geophys. Res. 106, 22067–22093 (2001)

    Article  ADS  Google Scholar 

  21. Wilson, C. & Adamec, D. A global view of bio-physical coupling from SeaWIFS and TOPEX satellite data, 1997–2001. Geophys. Res. Lett. 29,doi:10.1029/2001GL014063 (2002)

  22. Bahamón, N., Velasquez, Z. & Cruzado, A. Chlorophyll a and nitrogen flux in the tropical North Atlantic Ocean. Deep-Sea Res. I 50, 1189–1203 (2003)

    Article  Google Scholar 

  23. Fitzwater, S., Knauer, G. A. & Martin, J. H. Metal contamination and its effect on primary production measurements. Limnol. Oceanogr. 27, 544–551 (1982)

    Article  ADS  CAS  Google Scholar 

  24. Barber, R. T. et al. Primary productivity and its regulation in the Arabian Sea during 1995. Deep-Sea Res. II 48, 1127–1172 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Trenberth, K. E., Olsen, J. G. & Large, W. G. A Global Ocean Wind Stress Climatology Based on ECMWF Analyses (Tech. Note NCAR/TN-338 + STR, National Center for Atmospheric Research, Boulder, Colorado, 1989)

    Google Scholar 

  26. Kara, A. B., Rochford, P. A. & Hurlburt, H. E. Mixed layer depth variability over the global ocean. J. Geophys. Res. 108, doi:10.1029/2000JC000736 (2003)

  27. Lozier, M. S., Owens, W. B. & Curry, R. G. The climatology of the North Atlantic. Prog. Oceanogr. 36, 1–44 (1995)

    Article  ADS  Google Scholar 

  28. Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90, 6907–6924 (1985)

    Article  ADS  CAS  Google Scholar 

  29. Walker, S. J., Weiss, R. F. & Salameh, P. K. Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113, and carbon tetrachloride. J. Geophys. Res. 105, 14285–14296 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Warner, M. J. & Weiss, R. F. Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res. I 32, 1485–1497 (1985)

    Article  ADS  CAS  Google Scholar 

  31. Ledwell, J. R., Watson, A. J. & Law, C. S. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364, 701–703 (1993)

    Article  ADS  CAS  Google Scholar 

  32. Jenkins, W. J. Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems. Nature 300, 246–248 (1982)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Lethaby for the Hydrostation S data, D. Fratantoni for the EKE data, and D. LaBel and W. Smethie for the CFC age data. This Article also benefited from discussions with M. Follows and W. Jenkins. This work was supported by an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime B. Palter.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Nitrate, CFC age and PV for WOCE sections A20 and A22 in 1997. (PDF 1146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palter, J., Lozier, M. & Barber, R. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature 437, 687–692 (2005). https://doi.org/10.1038/nature03969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03969

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing