Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins

Abstract

Eukaryotic members of the CLC gene family function as plasma membrane chloride channels, or may provide neutralizing anion currents for V-type H+-ATPases that acidify compartments of the endosomal/lysosomal pathway1. Loss-of-function mutations in the endosomal protein ClC-5 impair renal endocytosis2 and lead to kidney stones3, whereas loss of function of the endosomal/lysosomal protein ClC-7 entails osteopetrosis4 and lysosomal storage disease5. Vesicular CLCs have been thought to be Cl- channels, in particular because ClC-4 and ClC-5 mediate plasma membrane Cl- currents upon heterologous expression6,7. Here we show that these two mainly endosomal CLC proteins instead function as electrogenic Cl-/H+ exchangers (also called antiporters), resembling the transport activity of the bacterial protein ClC-e1 (ref. 8), the crystal structure of which has already been determined9. Neutralization of a critical glutamate residue not only abolished the steep voltage-dependence of transport7, but also eliminated the coupling of anion flux to proton counter-transport. ClC-4 and ClC-5 may still compensate the charge accumulation by endosomal proton pumps, but are expected to couple directly vesicular pH gradients to Cl- gradients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depolarization alkalinizes cells expressing ClC-4 or ClC-5, but not those expressing ClC-0.
Figure 2: The E211A mutation abolishes flux coupling to H+.
Figure 3: H + transport depends on chloride and voltage.

Similar content being viewed by others

References

  1. Jentsch, T. J., Poët, M., Fuhrmann, J. C. & Zdebik, A. A. Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. Annu. Rev. Physiol. 67, 779–807 (2005)

    Article  CAS  Google Scholar 

  2. Piwon, N., Günther, W., Schwake, M., Bösl, M. R. & Jentsch, T. J. ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408, 369–373 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445–449 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Kornak, U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001)

    Article  CAS  Google Scholar 

  5. Kasper, D. et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24, 1079–1091 (2005)

    Article  CAS  Google Scholar 

  6. Steinmeyer, K., Schwappach, B., Bens, M., Vandewalle, A. & Jentsch, T. J. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J. Biol. Chem. 270, 31172–31177 (1995)

    Article  CAS  Google Scholar 

  7. Friedrich, T., Breiderhoff, T. & Jentsch, T. J. Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J. Biol. Chem. 274, 896–902 (1999)

    Article  CAS  Google Scholar 

  8. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427, 803–807 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Lingueglia, E., Champigny, G., Lazdunski, M. & Barbry, P. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378, 730–733 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Poët, M. et al. Exploration of the pore structure of a peptide-gated Na+ channel. EMBO J. 20, 5595–5602 (2001)

    Article  Google Scholar 

  12. Soleimani, M. et al. Pendrin: an apical Cl-/OH-/HCO3- exchanger in the kidney cortex. Am. J. Physiol. Renal Physiol. 280, F356–F364 (2001)

    Article  CAS  Google Scholar 

  13. Roos, A. & Boron, W. F. Intracellular pH. Physiol. Rev. 61, 296–434 (1981)

    Article  CAS  Google Scholar 

  14. Myers, V. B. & Haydon, D. A. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim. Biophys. Acta 274, 313–322 (1972)

    Article  CAS  Google Scholar 

  15. Li, X., Wang, T., Zhao, Z. & Weinman, S. A. The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells. Am. J. Physiol. Cell Physiol. 282, C1483–C1491 (2002)

    Article  CAS  Google Scholar 

  16. Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Traverso, S., Elia, L. & Pusch, M. Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic inhibitor. J. Gen. Physiol. 122, 295–306 (2003)

    Article  CAS  Google Scholar 

  18. Waldegger, S. & Jentsch, T. J. Functional and structural analysis of ClC-K chloride channels involved in renal disease. J. Biol. Chem. 275, 24527–24533 (2000)

    Article  CAS  Google Scholar 

  19. Fahlke, C., Yu, H. T., Beck, C. L., Rhodes, T. H. & George, A. L. Jr Pore-forming segments in voltage-gated chloride channels. Nature 390, 529–532 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Günther, W., Piwon, N. & Jentsch, T. J. The ClC-5 chloride channel knock-out mouse — an animal model for Dent's disease. Pflügers Arch. 445, 456–462 (2003)

    Article  Google Scholar 

  21. Stobrawa, S. M. et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29, 185–196 (2001)

    Article  CAS  Google Scholar 

  22. Hara-Chikuma, M. et al. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J. Biol. Chem. 280, 1241–1247 (2005)

    Article  CAS  Google Scholar 

  23. Yoshikawa, M. et al. CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis. Genes Cells 7, 597–605 (2002)

    Article  CAS  Google Scholar 

  24. Hara-Chikuma, M., Wang, Y., Guggino, S. E., Guggino, W. B. & Verkman, A. S. Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem. Biophys. Res. Commun. 329, 941–946 (2005)

    Article  CAS  Google Scholar 

  25. Davis-Kaplan, S. R., Askwith, C. C., Bengtzen, A. C., Radisky, D. & Kaplan, J. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc. Natl Acad. Sci. USA 95, 13641–13645 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Jentsch, T. J., Stein, V., Weinreich, F. & Zdebik, A. A. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Lazdunski for the gift of the FaNaC-CD8 expression vector, and M. Petersen and P. Breiden for technical assistance. This work was supported in part by the Prix Louis-Jeantet de Médecine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Jentsch.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheel, O., Zdebik, A., Lourdel, S. et al. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436, 424–427 (2005). https://doi.org/10.1038/nature03860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03860

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing