Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The long-term strength of Europe and its implications for plate-forming processes

Abstract

Field-based geological studies show that continental deformation preferentially occurs in young tectonic provinces rather than in old cratons1. This partitioning of deformation suggests that the cratons are stronger than surrounding younger Phanerozoic provinces. However, although Archaean and Phanerozoic lithosphere differ in their thickness2,3,4 and composition4,5, their relative strength is a matter of much debate. One proxy of strength is the effective elastic thickness of the lithosphere, Te. Unfortunately, spatial variations in Te are not well understood, as different methods yield different results. The differences are most apparent in cratons, where the ‘Bouguer coherence’ method yields large Te values (> 60 km)6,7,8,9 whereas the ‘free-air admittance’ method yields low values (< 25 km)10. Here we present estimates of the variability of Te in Europe using both methods. We show that when they are consistently formulated11, both methods yield comparable Te values that correlate with geology, and that the strength of old lithosphere (≥ 1.5 Gyr old) is much larger (mean Te > 60 km) than that of younger lithosphere (mean Te < 30 km). We propose that this strength difference reflects changes in lithospheric plate structure (thickness, geothermal gradient and composition) that result from mantle temperature and volatile content decrease through Earth's history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T e structure of Europe obtained using two different methods, and comparison with other geophysical data.
Figure 2: Mean T e determined from Bouguer coherence within each of the major tectonic provinces of Europe versus their age.

Similar content being viewed by others

References

  1. McConnell, R. B. Geological development of the rift system of Eastern Africa. Geol. Soc. Am. Bull. 83, 2549–2572 (1972)

    Article  ADS  Google Scholar 

  2. Polet, J. & Anderson, D. L. Depth extent of cratons as inferred from tomographic studies. Geology 23, 205–208 (1995)

    Article  ADS  Google Scholar 

  3. Artemeieva, I. M. & Mooney, W. D. Thermal evolution of Precambrian lithosphere: A global study. J. Geophys. Res. 106, 16387–16414 (2001)

    Article  ADS  Google Scholar 

  4. Jordan, T. H. Composition and development of the continental lithosphere. Nature 274, 544–548 (1978)

    Article  ADS  CAS  Google Scholar 

  5. O'Reilly, S. Y., Griffin, W. L., Poudjom Djomani, Y. H. & Morgan, P. Are lithospheres forever? Tracking changes in subcontinental mantle through time. GSA Today 11(4–10) (2001)

  6. Bechtel, T. D., Forsyth, D. W., Sharpton, V. L. & Grieve, R. A. F. Variations in the effective elastic thickness of the North American lithosphere. Nature 343, 636–638 (1989)

    Article  ADS  Google Scholar 

  7. Forsyth, D. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res. 90, 12623–12632 (1985)

    Article  ADS  Google Scholar 

  8. Audet, P. & Mareschal, J.-C. Variations in elastic thickness in the Canadian Shield. Earth Planet. Sci. Lett. 226, 17–31 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Swain, C. J. & Kirby, J. F. The effect of ‘noise’ on estimates of the elastic thickness of the continental lithosphere by the coherence method. Geophys. Res. Lett. 30, 1574–1578, doi: 10.1029/2003GL017070 (2003)

    Article  ADS  Google Scholar 

  10. McKenzie, D. Estimating Te in the presence of internal loads. J. Geophys. Res. 108, doi:10.1029/2002JB001766 (2003)

  11. Pérez-Gussinyé, M., Lowry, A., Watts, A. B. & Velicogna, I. On the recovery of the effective elastic thickness using spectral methods: examples from synthetic data and the Fennoscandian shield. J. Geophys. Res. 109, doi: 10.1029/2003JB002788 (2004)

  12. Grotzinger, J. & Royden, L. Elastic strength of the Slave craton at 1.9 Gyr and implications for the thermal evolution of the continents. Nature 347, 64–66 (1990)

    Article  ADS  Google Scholar 

  13. Windley, B. in A Continent Revealed. The European Geotraverse (eds Blundell, D., Freeman, R. & Mueller, S.) 139–214 (Cambridge Univ. Press, Cambridge, UK, 1992)

    Book  Google Scholar 

  14. Kogan, M. G., Fairhead, J. D., Balmino, G. & Makedonskii, E. L. Tectonic fabric and lithospheric strength of northern Eurasia based on gravity data. Geophys. Res. Lett. 21, 2653–2656 (1994)

    Article  ADS  Google Scholar 

  15. Poudjom Djomani, Y. H., Fairhead, J. D. & Griffin, W. L. The flexural rigidity of Fennoscandia: reflection of the tectonothermal age of the lithospheric mantle. Earth Planet. Sci. Lett. 174, 139–154 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Cloetingh, S. et al. Lithospheric memory, state of stress and rheology: neotectonic controls on Europe's intraplate continental topography. Quat. Sci. Rev. 24, 241–305 (2005)

    Article  ADS  Google Scholar 

  17. Stewart, J. & Watts, A. B. Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. J. Geophys. Res. 102, 5327–5352 (1997)

    Article  ADS  Google Scholar 

  18. McBride, J. H., Snyder, D. B., England, R. W. & Hobbs, R. W. Dipping reflectors beneath old orogens: A perspective from the British Caledonides. GSA Today 6, 1–6 (1996)

    Google Scholar 

  19. Mona Lisa Working Group, Closure of the Tornquist Sea: constraints from MONA LISA deep reflection seismic data. Geology 22, 617–620 (1997)

    Google Scholar 

  20. Boschi, L., Ekstroem, G. & Kutowski, B. Multiple resolution surface wave tomography, the Mediterranean basin. Geophys. J. Int. 157, 293–304 (2004)

    Article  ADS  Google Scholar 

  21. Watts, A. B. & Burov, E. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth Planet. Sci. Lett. 213, 113–131 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Pollack, H. Cratonization and thermal evolution of the mantle. Earth Planet. Sci. Lett. 80, 175–182 (1986)

    Article  ADS  Google Scholar 

  23. Ussami, N., Cogo de Sa, N. & Molina, E. C. Gravity map of Brazil. 2. Regional and residual anomalies and their correlation with major tectonic provinces. J. Geophys. Res. 98, 2199–2208 (1993)

    Article  ADS  Google Scholar 

  24. Hartley, R., Watts, A. B. & Fairhead, J. D. Isostasy of Africa. Earth Planet. Sci. Lett. 137, 1–18 (1996)

    Article  ADS  Google Scholar 

  25. Pearson, D. G. et al. Archaean Re-Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374, 711–713 (1995)

    Article  ADS  CAS  Google Scholar 

  26. Dixon, J. E., Dixon, T. H., Bell, D. R. & Malservisi, R. Lateral variation in upper mantle viscosity: role of water. Earth Planet. Sci. Lett. 222, 451–467 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Christensen, N. I. & Mooney, W. D. Seismic velocity, structure and composition of the continental crust—global view. J. Geophys. Res. 100, 9761–9788 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Doin, M. P., Felitout, L. & Christensen, U. Mantle convection and the stability of depleted and undepleted continental lithosphere. J. Geophys. Res. 102, 2771–2787 (1997)

    Article  ADS  Google Scholar 

  29. Lenardic, A., Moresi, L. N. & Mulhaus, L. N. Longevity and stability of cratonic lithosphere: Insight from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res. 108, doi: 10.1029/2002JB001859 (2003)

  30. Laske, G., Masters, G. & Reif, C. The Reference Earth Model Website. http://mahi.ucsd.edu/Gabi/rem.html (2000).

  31. Goodwin, A. M. Principles of Precambrian Geology (Academic, San Diego, California, 1996)

    Google Scholar 

  32. Brendan Murphy, J. & Nance, D. Sm-Nd isotopic systematics as tectonic tracers: an example from West Avalonia in the Canadian Appalachians. Earth Sci. Rev. 59, 77–100 (2002)

    Article  ADS  Google Scholar 

  33. Wessel, P. & Smith, W. H. F. Free software helps map and display data. Eos 72, 441–446 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Fairhead (GETECH, UK) for the provision of the gravity anomaly and topography data used in this Letter, J.-C. Mareschal and T. Lowry for constructive comments, and B. Holtzman, C. Mac Niocaill, S. Lamb, C. R. Ranero, J. Phipps Morgan, T. Jordan, T. Cunha, J. Hillier and G. Kozyreff for comments and discussions about the Letter. This work was supported by NERC. The figures presented here were constructed using GMT33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pérez-Gussinyé.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S3

Dependence of Te on window size (PDF 91 kb)

Supplementary Figure Legend

Caption to accompany the above Supplementary Figure. (DOC 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Gussinyé, M., Watts, A. The long-term strength of Europe and its implications for plate-forming processes. Nature 436, 381–384 (2005). https://doi.org/10.1038/nature03854

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03854

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing