Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ephrin signalling controls brain size by regulating apoptosis of neural progenitors

Abstract

Mechanisms controlling brain size include the regulation of neural progenitor cell proliferation, differentiation, survival and migration1,2. Here we show that ephrin-A/EphA receptor signalling plays a key role in controlling the size of the mouse cerebral cortex by regulating cortical progenitor cell apoptosis. In vivo gain of EphA receptor function, achieved through ectopic expression of ephrin-A5 in early cortical progenitors expressing EphA7, caused a transient wave of neural progenitor cell apoptosis, resulting in premature depletion of progenitors and a subsequent dramatic decrease in cortical size. In vitro treatment with soluble ephrin-A ligands similarly induced the rapid death of cultured dissociated cortical progenitors in a caspase-3-dependent manner, thereby confirming a direct effect of ephrin/Eph signalling on apoptotic cascades. Conversely, in vivo loss of EphA function, achieved through EphA7 gene disruption, caused a reduction in apoptosis occurring normally in forebrain neural progenitors, resulting in an increase in cortical size and, in extreme cases, exencephalic forebrain overgrowth. Together, these results identify ephrin/Eph signalling as a physiological trigger for apoptosis that can alter brain size and shape by regulating the number of neural progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of EphA7/ephrin-A5 transgenic mice.
Figure 2: Reduction in cortical size in TG/Emx1-Cre mutants.
Figure 3: Ephrin-A/EphA stimulation triggers cortical progenitor cell apoptosis in vivo and in vitro.
Figure 4: Decrease in cortical progenitor cell apoptosis and increase in forebrain size in EphA7 -/- mutants.

Similar content being viewed by others

References

  1. Caviness, V. S. Jr, Takahashi, T. & Nowakowski, R. S. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci. 18, 379–383 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. Mochida, G. H. & Walsh, C. A. Molecular genetics of human microcephaly. Curr. Opin. Neurol. 14, 151–156 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Klein, R. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr. Opin. Cell Biol. 16, 580–589 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Poliakov, A., Cotrina, M. & Wilkinson, D. G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465–480 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Yun, M. E., Johnson, R. R., Antic, A. & Donoghue, M. J. EphA family gene expression in the developing mouse neocortex: regional patterns reveal intrinsic programs and extrinsic influence. J. Comp. Neurol. 456, 203–216 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Chaveroche, M. K., Ghigo, J. M. & d'Enfert, C. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 28, E97 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Y., Muyrers, J. P., Testa, G. & Stewart, A. F. DNA cloning by homologous recombination in Escherichia coli. Nature Biotechnol. 18, 1314–1317 (2000)

    Article  CAS  Google Scholar 

  9. Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kuan, C. Y., Roth, K. A., Flavell, R. A. & Rakic, P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 23, 291–297 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Dufour, A. et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39, 453–465 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Wilkie, A. L., Jordan, S. A., Sharpe, J. A., Price, D. J. & Jackson, I. J. Widespread tangential dispersion and extensive cell death during early neurogenesis in the mouse neocortex. Dev. Biol. 267, 109–118 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. Thomaidou, D., Mione, M. C., Cavanagh, J. F. & Parnavelas, J. G. Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J. Neurosci. 17, 1075–1085 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027–1040 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Bello, B. C., Hirth, F. & Gould, A. P. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37, 209–219 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Dohn, M., Jiang, J. & Chen, X. Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20, 6503–6515 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Yue, Y. et al. Selective inhibition of spinal cord neurite outgrowth and cell survival by the Eph family ligand ephrin-A5. J. Neurosci. 19, 10026–10035 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Campbell, D. S. & Holt, C. E. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37, 939–952 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Geisbrecht, E. R. & Montell, D. J. A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118, 111–125 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. Bagnard, D. et al. Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J. Neurosci. 21, 3332–3341 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thiebault, K. et al. The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment. Proc. Natl Acad. Sci. USA 100, 4173–4178 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Williams, M. E., Strickland, P., Watanabe, K. & Hinck, L. UNC5H1 induces apoptosis via its juxtamembrane region through an interaction with NRAGE. J. Biol. Chem. 278, 17483–17490 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Matsunaga, E. et al. RGM and its receptor neogenin regulate neuronal survival. Nature Cell Biol. 6, 749–755 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Mazelin, L. et al. Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature 431, 80–84 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Raoul, C., Pettmann, B. & Henderson, C. E. Active killing of neurons during development and following stress: a role for p75(NTR) and Fas? Curr. Opin. Neurobiol. 10, 111–117 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Holmberg, J. et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19, 462–471 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vanderhaeghen, P. et al. A mapping label required for normal scale of body representation in the cortex. Nature Neurosci. 3, 358–365 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Vassart for continuous support and interest, and members of IRIBHM for help and advice, in particular D. Communi, N. Gaspard, M.-A. Lambot, S. Pietri, J. Seibt and F. Pauwels. We also thank the Development Studies Hybridoma Bank; T. Ciossek for sharing the EphA7 mutant mice; C. d'Enfert and J.-M. Ghigo for the gift of the pKOBEGA plasmid; A. de Kerchove for discussions about BAC recombineering; A. Deplano for help with pulse-field electrophoresis; S. Tajbakhsh for the gift of the floxed eGFP cassette; F. Stewart for the gift of the frt-Neo cassette and the 294-Flp bacteria; A. Goffinet for the gift of mouse reelin plasmid; R. Hevner for the gift of Tbr1 antibody; and F. Polleux for critically reading the manuscript. This work was funded by grants from the Belgian Funds for Scientific Research (FNRS and FRSM), the Belgian Queen Elizabeth Medical Foundation, the Belgian Interuniversity Attraction Poles Programme (to P.V.), and grants from the American Cancer Society and National Institutes of Health (to K.R.J). P.V. and C.L. are Research Associates, and L.P. is a Research Fellow, of the FNRS. A.D. and V.D. were supported by the Fonds pour la Recherche en Industrie et Agriculture (FRIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Vanderhaeghen.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Additional details of the generation of TGA7A5 BAC transgenic mice and immunohistochemistry techniques used in this study. (DOC 26 kb)

Supplementary Figure S1

Analysis of neural specification in TG/Emx1-Cre mutants. (PDF 388 kb)

Supplementary Figure S2

Analysis of neural specification in EphA7 -/- mutants. (PDF 398 kb)

Supplementary Figure S3

Patterns of expression of ephrin-A2, ephrin-A3, ephrin-A5 and EphA7 in the early mouse forebrain. (PDF 241 kb)

Supplementary Legends

Legends to accompany the above Supplementary Figures. (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Depaepe, V., Suarez-Gonzalez, N., Dufour, A. et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435, 1244–1250 (2005). https://doi.org/10.1038/nature03651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03651

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing