Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The initiation of liver development is dependent on Foxa transcription factors

Abstract

The specification of the vertebrate liver is thought to occur in a two-step process, beginning with the establishment of competence within the foregut endoderm for responding to organ-specific signals, followed by the induction of liver-specific genes. On the basis of expression and in vitro studies, it has been proposed that the Foxa transcription factors establish competence by opening compacted chromatin structures within liver-specific target genes1. Here we show that Foxa1 and Foxa2 (forkhead box proteins A1 and A2) are required in concert for hepatic specification in mouse. In embryos deficient for both genes in the foregut endoderm, no liver bud is evident and expression of the hepatoblast marker alpha-fetoprotein (Afp) is lost. Furthermore, Foxa1/Foxa2-deficient endoderm cultured in the presence of exogenous fibroblast growth factor 2 (FGF2) fails to initiate expression of the liver markers albumin and transthyretin. Thus, Foxa1 and Foxa2 are required for the establishment of competence within the foregut endoderm and the onset of hepatogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Foxa1-/-;Foxa2LoxP/LoxP;Foxa3-Cre mutant embryo.
Figure 2: Foxa1-/-;Foxa2LoxP/LoxP;Foxa3-Cre embryos fail to initiate the hepatic programme.
Figure 3: In vitro activation of the hepatic programme by FGF is abrogated in Foxa1-/-;Foxa2LoxP/LoxP;Foxa3-Cre embryos.

Similar content being viewed by others

References

  1. Zaret, K. S. Regulatory phases of early liver development: paradigms of organogenesis. Nature Rev. Genet. 3, 499–512 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Bossard, P. & Zaret, K. S. GATA transcription factors as potentiators of gut endoderm differentiation. Development 125, 4909–4917 (1998)

    CAS  PubMed  Google Scholar 

  3. Gualdi, R. et al. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 10, 1670–1682 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. Jung, J., Zheng, M., Goldfarb, M. & Zaret, K. S. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284, 1998–2003 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Bossard, P. & Zaret, K. S. Repressive and restrictive mesodermal interactions with gut endoderm: possible relation to Meckel's Diverticulum. Development 127, 4915–4923 (2000)

    CAS  PubMed  Google Scholar 

  6. Costa, R. H., Grayson, D. R. & Darnell, J. E. Jr Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and α1-antitrypsin genes. Mol. Cell. Biol. 9, 1415–1425 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lai, E. et al. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 4, 1427–1436 (1990)

    Article  CAS  PubMed  Google Scholar 

  8. Lai, E., Prezioso, V. R., Tao, W. F., Chen, W. S. & Darnell, J. E. Jr Hepatocyte nuclear factor 3 alpha belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev. 5, 416–427 (1991)

    Article  CAS  PubMed  Google Scholar 

  9. Kaestner, K. H. The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism. Trends Endocrinol. Metab. 11, 281–285 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Holmqvist, P. H., Belikov, S., Zaret, K. S. & Wrange, O. FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription. Exp. Cell Res. 304, 593–603 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. Cirillo, L. A. & Zaret, K. S. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol. Cell 4, 961–969 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Cirillo, L. A. et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17, 244–254 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Crowe, A. J. et al. Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the α-fetoprotein gene. J. Biol. Chem. 274, 25113–25120 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Kaestner, K. H., Katz, J., Liu, Y., Drucker, D. J. & Schutz, G. Inactivation of the winged helix transcription factor HNF3α affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev. 13, 495–504 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen, W., Scearce, L. M., Brestelli, J. E., Sund, N. J. & Kaestner, K. H. Foxa3 (hepatocyte nuclear factor 3γ) is required for the regulation of hepatic GLUT2 expression and the maintenance of glucose homeostasis during a prolonged fast. J. Biol. Chem. 276, 42812–42817 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Ang, S. L. & Rossant, J. HNF-3β is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994)

    Article  CAS  PubMed  Google Scholar 

  18. Weinstein, D. C. et al. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78, 575–588 (1994)

    Article  CAS  PubMed  Google Scholar 

  19. Lee, C. S., Sund, N. J., Behr, R., Herrera, P. L. & Kaestner, K. H. Foxa2 is required for the differentiation of pancreatic α-cells. Dev. Biol. 278, 484–495 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Bort, R., Martinez-Barbera, J. P., Beddington, R. S. & Zaret, K. S. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 131, 797–806 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Deutsch, G., Jung, J., Zheng, M., Lora, J. & Zaret, K. S. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128, 871–881 (2001)

    CAS  PubMed  Google Scholar 

  22. Keng, V. W. et al. Homeobox gene Hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem. Biophys. Res. Commun. 276, 1155–1161 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Martinez Barbera, J. P. et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433–2445 (2000)

    CAS  PubMed  Google Scholar 

  24. Parviz, F. et al. Hepatocyte nuclear factor 4α controls the development of a hepatic epithelium and liver morphogenesis. Nature Genet. 34, 292–296 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Coffinier, C. et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development 129, 1829–1838 (2002)

    CAS  PubMed  Google Scholar 

  26. Clotman, F. et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 129, 1819–1828 (2002)

    CAS  PubMed  Google Scholar 

  27. Wilkinson, D. G. In Situ Hybridization. A Practical Approach (Oxford Univ. Press, Oxford, 1992)

    Google Scholar 

Download references

Acknowledgements

We thank A. Calmont for technical help with explant culture. We are also grateful for technical support from the Morphology Core at the University of Pennsylvania. This work was supported by an award from the National Institutes of Health (NIH) to K.H.K., a Children's Digestive Health and Nutrition Foundation Young Investigator Award to J.R.F. and by training grants from the NIH to C.S.L. and J.R.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus H. Kaestner.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., Friedman, J., Fulmer, J. et al. The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944–947 (2005). https://doi.org/10.1038/nature03649

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03649

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing