Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for the regulation of tubulin by vinblastine

Abstract

Vinblastine is one of several tubulin-targeting Vinca alkaloids that have been responsible for many chemotherapeutic successes since their introduction in the clinic as antitumour drugs1. In contrast with the two other classes of small tubulin-binding molecules (Taxol2 and colchicine3), the binding site of vinblastine is largely unknown and the molecular mechanism of this drug has remained elusive. Here we report the X-ray structure of vinblastine bound to tubulin in a complex with the RB3 protein stathmin-like domain (RB3-SLD). Vinblastine introduces a wedge at the interface of two tubulin molecules and thus interferes with tubulin assembly. Together with electron microscopical and biochemical data, the structure explains vinblastine-induced tubulin self-association into spiral aggregates at the expense of microtubule growth4. It also shows that vinblastine and the amino-terminal part of RB3-SLD binding sites share a hydrophobic groove on the α-tubulin surface that is located at an intermolecular contact in microtubules. This is an attractive target for drugs designed to perturb microtubule dynamics by interfacial interference, for which tubulin seems ideally suited because of its propensity to self-associate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The vinblastine-binding site.
Figure 2: Structural changes in (Tc) 2 R after binding vinblastine.
Figure 3
Figure 4: The pseudo-first-order plot of the apparent rate constants for binding of vinblastine at the indicated concentrations to 0.3 µM (Tc) 2 R yields the values of k + (slope) and k - (ordinate intercept). The influence of SLDs on vinblastine-mediated formation of spiral aggregates.

Similar content being viewed by others

References

  1. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nature Rev. Cancer 4, 253–265 (2004)

    Article  CAS  Google Scholar 

  2. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Ravelli, R. B. G. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Himes, R. H. Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules. Pharmacol. Ther. 51, 257–267 (1991)

    Article  CAS  Google Scholar 

  5. Trouet, A. B., Hannart, J. A. A. & Rao, K. S. B. (Omnichem S.A., Belg), US Patent 4,639,456 (1987).

  6. Ennifar, E., Carpentier, P., Ferrer, J. L., Walter, P. & Dumas, P. X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. Acta Crystallogr. D 58, 1262–1268 (2002)

    Article  CAS  Google Scholar 

  7. Ravelli, R. B. G., Leiros, H. K., Pan, B., Caffrey, M. & McSweeney, S. Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11, 217–224 (2003)

    Article  CAS  Google Scholar 

  8. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999)

    Article  CAS  Google Scholar 

  9. Nogales, E., Downing, K. H., Amos, L. A. & Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol. 5, 451–458 (1998)

    Article  CAS  Google Scholar 

  10. Rai, S. S. & Wolff, J. Localization of the vinblastine-binding site on β-tubulin. J. Biol. Chem. 271, 14707–14711 (1996)

    Article  CAS  Google Scholar 

  11. Mitra, A. & Sept, D. Localization of the antimitotic peptide and depsipeptide binding site on beta-tubulin. Biochemistry 43, 13955–13962 (2004)

    Article  CAS  Google Scholar 

  12. Usui, T. et al. The anticancer natural product pironetin selectively targets Lys352 of α-tubulin. Chem. Biol. 11, 799–806 (2004)

    Article  CAS  Google Scholar 

  13. Lobert, S. et al. Vinca alkaloid-induced tubulin spiral formation correlates with cytotoxicity in the leukemic L1210 cell line. Biochemistry 39, 12053–12062 (2000)

    Article  CAS  Google Scholar 

  14. Sackett, D. L. Vinca site agents induce structural changes in tubulin different from and antagonistic to changes induced by colchicine site agents. Biochemistry 34, 7010–7019 (1995)

    Article  CAS  Google Scholar 

  15. Na, G. C. & Timasheff, S. N. Interaction of vinblastine with calf brain tubulin. Biochemistry 25, 6214–6222 (1986)

    Article  CAS  Google Scholar 

  16. Weisenberg, R. C. & Timasheff, S. N. Aggregation of microtubule subunit protein. Effects of divalent cations, colchicine and vinblastine. Biochemistry 9, 4110–4116 (1970)

    Article  CAS  Google Scholar 

  17. Haskins, K. M., Donoso, J. A. & Himes, R. H. Spirals and paracrystals induced by Vinca alkaloids: evidence that microtubule-associated proteins act as polycations. J. Cell Sci. 47, 237–247 (1981)

    CAS  PubMed  Google Scholar 

  18. Gigant, B. et al. The 4 Å X-ray structure of a tubulin:stathmin-like domain complex. Cell 102, 809–816 (2000)

    Article  CAS  Google Scholar 

  19. Müller-Reichert, T., Chrétien, D., Severin, F. & Hyman, A. A. Structural changes at microtubule ends accompanying GTP hydrolysis: Information from a slowly hydrolyzable analogue of GTP, guanylyl (α,β)methylenediphosphonate. Proc. Natl Acad. Sci. USA 95, 3661–3666 (1998)

    Article  ADS  Google Scholar 

  20. Nogales, E., Wang, H. W. & Niederstrasser, H. Tubulin rings: which way do they curve? Curr. Opin. Struct. Biol. 13, 256–261 (2003)

    Article  CAS  Google Scholar 

  21. Steinmetz, M. O. et al. Op18/stathmin caps a kinked protofilament-like tubulin tetramer. EMBO J. 19, 572–580 (2000)

    Article  CAS  Google Scholar 

  22. Wilson, L., Jordan, M. A., Morse, A. & Margolis, R. L. Interaction of vinblastine with steady-state microtubules in vitro . J. Mol. Biol. 159, 125–149 (1982)

    Article  CAS  Google Scholar 

  23. Toso, R. J., Jordan, M. A., Farrell, K. W., Matsumoto, B. & Wilson, L. Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry 32, 1285–1293 (1993)

    Article  CAS  Google Scholar 

  24. Jordan, M. A., Thrower, D. & Wilson, L. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res. 51, 2212–2222 (1991)

    CAS  PubMed  Google Scholar 

  25. Charbaut, E. et al. Stathmin family proteins display specific molecular and tubulin binding properties. J. Biol. Chem. 276, 16146–16154 (2001)

    Article  CAS  Google Scholar 

  26. Redeker, V. et al. Probing the native structure of stathmin and its interaction domains with tubulin. J. Biol. Chem. 275, 6841–6849 (2000)

    Article  CAS  Google Scholar 

  27. Ogawa, T., Nitta, R., Okada, Y. & Hirokawa, N. A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116, 591–602 (2004)

    Article  CAS  Google Scholar 

  28. Renault, L., Guibert, B. & Cherfils, J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525–530 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Bau, R. & Jin, K. K. Crystal structure of vinblastine. J. Chem. Soc. Perkin Trans. 1, 2079–2082 (2000)

    Article  Google Scholar 

  30. Schuttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

F.R. thanks F. Guéritte and D. Guénard for support. We thank M.-F. Carlier for help and discussions. We are grateful to the Interdisciplinary Center for Microscopy of the University of Basel for access to the transmission electron microscope. This work was supported by the Association pour la Recherche sur le Cancer, the Centre National pour la Recherche Scientifique and the Institut National pour la Santé et la Recherche Médicale. Diffraction data were collected on beamline ID14-4 at European Synchrotron Radiation Facility. C.W. was supported in part by the K.C. Wong foundation and by an ARC postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Knossow.

Ethics declarations

Competing interests

Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 1Z2B (tubulin–colchicine:RB3-SLD–vinblastine). Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Electron micrograph of negatively stained vinblastine-induced tubulin-colchicine curls. (DOC 160 kb)

Supplementary Figure S2

Interference between vinblastine and the straight tubulin assembly in protofilaments. (DOC 166 kb)

Supplementary Figure S3

The change of M-loop position after vinblastine-binding to a straight protofilament. (DOC 394 kb)

Supplementary Figure Legends

Legends to accompany the above Supplementary Figures S1-S3. (DOC 22 kb)

Supplementary Methods

Details on the proteins and buffers, structure determination and illustrations used in the study. (DOC 20 kb)

Supplementary Table S1

Crystallographic data and refinement statistics. (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gigant, B., Wang, C., Ravelli, R. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 435, 519–522 (2005). https://doi.org/10.1038/nature03566

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03566

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing