Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanisms of kinetochore capture by spindle microtubules

Abstract

For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore–microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualizing kinetochore capture and transport along microtubules.
Figure 2: Mechanisms for nuclear microtubule extension and for kinetochore capture.
Figure 3: Captured kinetochores facilitate microtubule rescue.
Figure 4: Microtubule rescue at the plus end coincides with the arrival of Stu2 protein transported from captured kinetochores.
Figure 5: Kar3 kinesin is involved in the poleward transport of kinetochores along the side of microtubules.
Figure 6: Association of authentic centromeres with microtubules in unperturbed cell cycles.

Similar content being viewed by others

References

  1. McIntosh, J. R., Grishchuk, E. L. & West, R. R. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18, 193–219 (2002)

    Article  CAS  Google Scholar 

  2. Rieder, C. L. & Alexander, S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990)

    Article  CAS  Google Scholar 

  3. Hayden, J. H., Bowser, S. S. & Rieder, C. L. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J. Cell Biol. 111, 1039–1045 (1990)

    Article  CAS  Google Scholar 

  4. Merdes, A. & De Mey, J. The mechanism of kinetochore-spindle attachment and polewards movement analyzed in PtK2 cells at the prophase-prometaphase transition. Eur. J. Cell Biol. 53, 313–325 (1990)

    CAS  PubMed  Google Scholar 

  5. Goshima, G. & Yanagida, M. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100, 619–633 (2000)

    Article  CAS  Google Scholar 

  6. He, X., Asthana, S. & Sorger, P. K. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101, 763–775 (2000)

    Article  CAS  Google Scholar 

  7. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492–499 (2000)

    Article  CAS  Google Scholar 

  8. Pearson, C. G., Maddox, P. S., Salmon, E. D. & Bloom, K. Budding yeast chromosome structure and dynamics during mitosis. J. Cell Biol. 152, 1255–1266 (2001)

    Article  CAS  Google Scholar 

  9. Winey, M. & O'Toole, E. T. The spindle cycle in budding yeast. Nature Cell Biol. 3, E23–E27 (2001)

    Article  CAS  Google Scholar 

  10. Tanaka, T. U. et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002)

    Article  CAS  Google Scholar 

  11. Tanaka, T. U. Chromosome bi-orientation on the mitotic spindle. Phil. Trans. R. Soc. Lond. B (in the press); doi:10.1098/rstb.2004.1612

  12. Hill, A. & Bloom, K. Genetic manipulation of centromere function. Mol. Cell. Biol. 7, 2397–2405 (1987)

    Article  CAS  Google Scholar 

  13. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997)

    Article  CAS  Google Scholar 

  14. Nasmyth, K., Peters, J. M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379–1385 (2000)

    Article  ADS  CAS  Google Scholar 

  15. O'Toole, E. T., Winey, M. & McIntosh, J. R. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 10, 2017–2031 (1999)

    Article  CAS  Google Scholar 

  16. Gupta, M. L. Jr et al. β-Tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast. Mol. Biol. Cell 13, 2919–2932 (2002)

    Article  CAS  Google Scholar 

  17. McAinsh, A. D., Tytell, J. D. & Sorger, P. K. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol. 19, 519–539 (2003)

    Article  CAS  Google Scholar 

  18. Dewar, H., Tanaka, K., Nasmyth, K. & Tanaka, T. U. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428, 93–97 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005)

    Article  CAS  Google Scholar 

  20. Corbett, A. H. & Silver, P. A. Nucleocytoplasmic transport of macromolecules. Microbiol. Mol. Biol. Rev. 61, 193–211 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hetzer, M., Gruss, O. J. & Mattaj, I. W. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nature Cell Biol. 4, E177–E184 (2002)

    Article  CAS  Google Scholar 

  22. Quimby, B. B. & Dasso, M. The small GTPase Ran: interpreting the signs. Curr. Opin. Cell Biol. 15, 338–344 (2003)

    Article  CAS  Google Scholar 

  23. Wilde, A. et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nature Cell Biol. 3, 221–227 (2001)

    Article  CAS  Google Scholar 

  24. Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. & Karsenti, E. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nature Cell Biol. 3, 228–234 (2001)

    Article  CAS  Google Scholar 

  25. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13, 532–544 (1999)

    Article  CAS  Google Scholar 

  26. Cheeseman, I. M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D. G. & Barnes, G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212 (2001)

    Article  CAS  Google Scholar 

  27. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106, 195–206 (2001)

    Article  CAS  Google Scholar 

  28. Janke, C., Ortiz, J., Tanaka, T. U., Lechner, J. & Schiebel, E. Four new subunits of the Dam1–Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21, 181–193 (2002)

    Article  CAS  Google Scholar 

  29. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002)

    Article  CAS  Google Scholar 

  30. Maddox, P. S., Bloom, K. S. & Salmon, E. D. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nature Cell Biol. 2, 36–41 (2000)

    Article  CAS  Google Scholar 

  31. Tirnauer, J. S., O'Toole, E., Berrueta, L., Bierer, B. E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145, 993–1007 (1999)

    Article  CAS  Google Scholar 

  32. van Breugel, M., Drechsel, D. & Hyman, A. Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J. Cell Biol. 161, 359–369 (2003)

    Article  CAS  Google Scholar 

  33. Lin, H. et al. Polyploids require Bik1 for kinetochore–microtubule attachment. J. Cell Biol. 155, 1173–1184 (2001)

    Article  CAS  Google Scholar 

  34. Carvalho, P., Gupta, M. L. Jr, Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004)

    Article  CAS  Google Scholar 

  35. Hildebrandt, E. R. & Hoyt, M. A. Mitotic motors in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1496, 99–116 (2000)

    Article  CAS  Google Scholar 

  36. Saunders, W. S., Koshland, D., Eshel, D., Gibbons, I. R. & Hoyt, M. A. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J. Cell Biol. 128, 617–624 (1995)

    Article  CAS  Google Scholar 

  37. Meluh, P. B. & Rose, M. D. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60, 1029–1041 (1990)

    Article  CAS  Google Scholar 

  38. Maddox, P. S., Stemple, J. K., Satterwhite, L., Salmon, E. D. & Bloom, K. The minus end-directed motor Kar3 is required for coupling dynamic microtubule plus ends to the cortical shmoo tip in budding yeast. Curr. Biol. 13, 1423–1428 (2003)

    Article  CAS  Google Scholar 

  39. Muller-Reichert, T. et al. Analysis of the distribution of the kinetochore protein Ndc10p in Saccharomyces cerevisiae using 3-D modeling of mitotic spindles. Chromosoma 111, 417–428 (2003)

    Article  Google Scholar 

  40. Adams, I. R. & Kilmartin, J. V. Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol. 10, 329–335 (2000)

    Article  CAS  Google Scholar 

  41. Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002)

    Article  CAS  Google Scholar 

  42. Westermann, S. et al. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163, 215–222 (2003)

    Article  CAS  Google Scholar 

  43. Nekrasov, V. S., Smith, M. A., Peak-Chew, S. & Kilmartin, J. V. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 4931–4946 (2003)

    Article  CAS  Google Scholar 

  44. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003)

    Article  CAS  Google Scholar 

  45. Miranda, J. L., De Wulf, P., Sorger, P. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005)

    Article  CAS  Google Scholar 

  46. Westermann, S. et al. Formation of a dynamic kinetochore-microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005)

    Article  CAS  Google Scholar 

  47. Pickett-Heaps, J. D. Cell division in diatoms. Int. Rev. Cytol. 128, 63–107 (1991)

    Article  Google Scholar 

  48. Carazo-Salas, R. E. & Karsenti, E. Long-range communication between chromatin and microtubules in Xenopus egg extracts. Curr. Biol. 13, 1728–1733 (2003)

    Article  CAS  Google Scholar 

  49. Alexander, S. P. & Rieder, C. L. Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J. Cell Biol. 113, 805–815 (1991)

    Article  CAS  Google Scholar 

  50. King, J. M., Hays, T. S. & Nicklas, R. B. Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J. Cell Biol. 151, 739–748 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. R. Swedlow, M. J. R. Stark, A. Gartner, M. A. Hoyt, A. Desai, P. R. Clarke, P. D. Andrews and members of the Tanaka laboratory for discussions and for reading the manuscript; T. Hyman, K. Nasmyth, I. W. Mattaj, E. Karsenti, F. Uhlmann and J. Ellenberg for discussions; J.-F. Maure, N. Rachidi and M. J. R. Stark for sharing their unpublished data; Y. Kitamura, S. Swift, M. Romao and G. Keir for technical help; F. Wheatley and the media kitchen for media preparation; M. A. Hoyt, D. Pellman, R. Ciosk, F. Uhlmann, K. Nasmyth, T. C. Huffaker, J. V. Kilmartin, E. Schiebel, S. Biggins, C. S. M. Chan, I. M. Cheeseman, G. Barnes, R. Tsien, S. J. Elledge, J. Lechner, A. H. Corbett, P. A. Silver, P. K. Sorger, X. He, A. F. Straight, M. D. Rose, V. Doye, F. Severin, I. Ouspenski, K. Bloom, T. Nishimoto, J. E. Haber, T. N. Davis, EUROSCARF and the Yeast Resource Center for reagents. This work was supported by The Wellcome Trust, Cancer Research UK and the EMBO Young Investigator Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki U. Tanaka.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Notes and Supplementary Figures S1-S13. (PDF 462 kb)

Supplementary Video Legends

Legends to accompany the below Supplementary Videos. (RTF 4 kb)

Supplementary Video S1

Video of the cell shown in Fig 1b. Speed in the video is 100 times faster than the actual motion. (MOV 6892 kb)

Supplementary Video S2

Video of the cell shown in Fig 1c. Speed in the video is 100 times faster than the actual motion. (MOV 6034 kb)

Supplementary Video S3

Video of the cell shown in Supplementary Fig S2. Speed in the video is 100 times faster than the actual motion. (MOV 3798 kb)

Supplementary Video S4

Video of the cell shown in Supplementary Fig S4a. Speed in the video is 100 times faster than the actual motion. (MOV 1839 kb)

Supplementary Video S5

Video of the cell shown in Fig 3a, top. Speed in the video is 100 times faster than the actual motion. (MOV 2663 kb)

Supplementary Video S6

Video of the cell shown in Fig 3a, bottom. Speed in the video is 100 times faster than the actual motion. (MOV 5923 kb)

Supplementary Video S7

Video of the cells shown in Fig 4a. Speed in the video is 50 times faster than the actual motion. (MOV 5193 kb)

Supplementary Video S8

Video of a wild type control for Supplementary Video S9 and S10. This cell is not shown in any panels of figures. KAR3+ cells (T3531) were treated as in Fig 5. GFP and YFP signals were collected together as in Supplementary Video S9 and S10). Speed in the video is 300 times faster than the actual motion. (MOV 2532 kb)

Supplementary Video S9

Video of the kar3-1 cell shown in Fig 5a. Speed in the video is 300 times faster than the actual motion. (MOV 2601 kb)

Supplementary Video S10

Video of the KAR3-overexpressed cell shown in Fig 5a. Speed in the video is 300 times faster than the actual motion. (MOV 2460 kb)

Supplementary Video S11

Video of the cell shown in Supplementary Fig S12. Speed in the video is 150 times faster than the actual motion. (MOV 1603 kb)

Video S12

Video of the cell shown in Fig 6a. Speed in the video is 50 times faster than the actual motion. (MOV 4278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Mukae, N., Dewar, H. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005). https://doi.org/10.1038/nature03483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03483

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing