Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane

Abstract

Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that catalyses the conversion of methane to methanol. Knowledge of how pMMO performs this extremely challenging chemistry may have an impact on the use of methane as an alternative energy source by facilitating the development of new synthetic catalysts. We have determined the structure of pMMO from the methanotroph Methylococcus capsulatus (Bath) to a resolution of 2.8 Å. The enzyme is a trimer with an α3β3γ3 polypeptide arrangement. Two metal centres, modelled as mononuclear copper and dinuclear copper, are located in soluble regions of each pmoB subunit, which resembles cytochrome c oxidase subunit II. A third metal centre, occupied by zinc in the crystal, is located within the membrane. The structure provides new insight into the molecular details of biological methane oxidation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pMMO trimer viewed parallel to the membrane normal (a) and perpendicular to the membrane normal (b).
Figure 2: The pMMO subunits.
Figure 3: Comparison of pmoB (magenta) with Paracoccus denitrificans cytochrome c oxidase subunit II (green, PDB accession code 1AR1).
Figure 4: The pMMO metal centres viewed approximately 90° from the orientation shown in Fig. 2a.

Similar content being viewed by others

References

  1. Periana, R. A. et al. Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the CH activation reaction. J. Mol. Catal. A 220, 7–25 (2004)

    Article  CAS  Google Scholar 

  2. Periana, R. A. et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993)

    Article  CAS  ADS  Google Scholar 

  3. Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Park, S., Brown, K. W. & Thomas, J. C. The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Manag. Res. 20, 434–444 (2002)

    Article  CAS  Google Scholar 

  5. Sullivan, J. P., Dickinson, D. & Chase, C. A. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Crit. Rev. Microbiol. 24, 335–373 (1998)

    Article  CAS  Google Scholar 

  6. Merkx, M. et al. Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew. Chem. Int. Edn Engl. 40, 2782–2807 (2001)

    Article  CAS  Google Scholar 

  7. Arp, D. J., Sayavedra-Soto, L. A. & Hommes, N. G. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea . Arch. Microbiol. 178, 250–255 (2002)

    Article  CAS  Google Scholar 

  8. Rosenzweig, A. C., Frederick, C. A., Lippard, S. J. & Nordlund, P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366, 537–543 (1993)

    Article  CAS  ADS  Google Scholar 

  9. Lieberman, R. L. & Rosenzweig, A. C. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39, 147–164 (2004)

    Article  CAS  Google Scholar 

  10. Semrau, J. D. et al. Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol. 177, 3071–3079 (1995)

    Article  CAS  Google Scholar 

  11. Stolyar, S., Costello, A. M., Peeples, T. L. & Lidstrom, M. E. Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology 145, 1235–1244 (1999)

    Article  CAS  Google Scholar 

  12. Yu, S. S.-F. et al. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 185, 5915–5924 (2003)

    Article  CAS  Google Scholar 

  13. Lieberman, R. L. et al. Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster. Proc. Natl Acad. Sci. USA 100, 3820–3825 (2003)

    Article  CAS  ADS  Google Scholar 

  14. Choi, D. W. et al. The membrane-associated methane monooxygenase pMMO and pMMO-NADH:quinone oxidoreductase complex from Methylococcus capsulatus Bath. J. Bacteriol. 185, 5755–5764 (2003)

    Article  CAS  Google Scholar 

  15. Nguyen, H. H., Elliott, S. J., Yip, J. H. & Chan, S. I. The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. J. Biol. Chem. 273, 7957–7966 (1998)

    Article  CAS  Google Scholar 

  16. Basu, P., Katterle, B., Andersson, K. K. & Dalton, H. The membrane-associated form of methane monooxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. Biochem. J. 369, 417–427 (2003)

    Article  CAS  Google Scholar 

  17. Chan, S. I., Chen, K. H.-C., Yu, S. S.-F., Chen, C.-L. & Kuo, S. S.-J. Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 43, 4421–4430 (2004)

    Article  CAS  Google Scholar 

  18. Lemos, S. S., Yuan, H. & Perille-Collins, M. L. Review of multifrequency EPR of copper in particulate methane monooxygenase. Curr. Top. Biophys. 26, 43–48 (2002)

    CAS  Google Scholar 

  19. Kim, H. J. et al. Methanobactin, a copper-acquisition compound from methane oxidizing bacteria. Science 305, 1612–1615 (2004)

    Article  CAS  ADS  Google Scholar 

  20. le Maire, M., Champeil, P. & Møller, J. V. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 1508, 86–111 (2000)

    Article  CAS  Google Scholar 

  21. Tsuprun, V. L. et al. Electron microscopy of methane monooxygenase of the methane-oxidizing bacterium Methylococcus capsulatus . Dokl. Akad. Nauk SSSR 292, 490–493 (1987)

    CAS  Google Scholar 

  22. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans . Nature 376, 660–669 (1995)

    Article  CAS  ADS  Google Scholar 

  23. Tsukihara, T. et al. Structures of the metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269, 1069–1074 (1995)

    Article  CAS  ADS  Google Scholar 

  24. Bowie, J. U. Helix packing in membrane proteins. J. Mol. Biol. 272, 780–789 (1997)

    Article  CAS  Google Scholar 

  25. Ward, N. et al. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol. 2, e303 (2004)

    Article  Google Scholar 

  26. Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2605 (1996)

    Article  CAS  Google Scholar 

  27. Barondeau, D. P., Kassmann, C. J., Bruns, C. K., Tainer, J. A. & Getzoff, E. D. Nickel superoxide dismutase structure and mechanism. Biochemistry 43, 8038–8047 (2004)

    Article  CAS  Google Scholar 

  28. Martinez, S. E., Huang, D. S., Szczepaniak, A., Cramer, W. A. & Smith, J. L. Crystal structure of chloroplast cytochrome f reveals novel cytochrome fold and unexpected heme ligation. Structure 2, 95–105 (1994)

    Article  CAS  Google Scholar 

  29. Harford, C. & Sarkar, B. Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc. Chem. Res. 30, 123–130 (1997)

    Article  CAS  Google Scholar 

  30. Elliott, S. J., Randall, D. W., Britt, R. D. & Chan, S. I. Pulsed EPR studies of particulate methane monooxygenase from Methylococcus capsulatus (Bath): evidence for histidine ligation. J. Am. Chem. Soc. 120, 3247–3248 (1998)

    Article  CAS  Google Scholar 

  31. Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. Structure and spectroscopy of copper-dioxygen complexes. Chem. Rev. 104, 1013–1045 (2004)

    Article  CAS  Google Scholar 

  32. Gray, H. B. & Winkler, J. R. Electron tunneling through proteins. Q. Rev. Biophys. 36, 341–372 (2003)

    Article  CAS  Google Scholar 

  33. Witt, H., Malatesta, F., Nicoletti, F., Brunori, M. & Ludwig, B. Tryptophan 121 of subunit II is the electron entry site to cytochrome-c oxidase in Paracoccus denitrificans . J. Biol. Chem. 273, 5132–5136 (1998)

    Article  CAS  Google Scholar 

  34. George, S. D. et al. A quantitative description of the ground-state wave function of CuA by X-ray absorption spectroscopy: comparison to plastocyanin and relevance to electron transfer. J. Am. Chem. Soc. 123, 5757–5767 (2001)

    Article  Google Scholar 

  35. Prigge, S. T., Mains, R. E., Eipper, B. A. & Amzel, L. M. New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell. Mol. Life Sci. 57, 1236–1259 (2000)

    Article  CAS  Google Scholar 

  36. Chen, P. & Solomon, E. I. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms. Proc. Natl Acad. Sci. USA 101, 13105–13110 (2004)

    Article  CAS  ADS  Google Scholar 

  37. Nordlund, P. & Eklund, H. Di-iron-carboxylate proteins. Curr. Opin. Struct. Biol. 5, 758–766 (1995)

    Article  CAS  Google Scholar 

  38. Cook, S. A. & Shiemke, A. K. Evidence that a type-2 NADH:quinone oxidoreductase mediates electron transfer to particulate methane monooxygenase in Methylococcus capsulatus . Arch. Biochem. Biophys. 398, 32–40 (2002)

    Article  CAS  Google Scholar 

  39. Maneg, O., Malatesta, F., Ludwig, B. & Drosou, V. Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios. Biochim. Biophys. Acta 1655, 274–281 (2004)

    Article  CAS  Google Scholar 

  40. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  41. Collaborative Computational Project Number 4. The CCP4 suite programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  42. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  43. Terwilliger, T. C. Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D 59, 34–44 (2002)

    Google Scholar 

  44. McRee, D. E. XtalView Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999)

    Article  CAS  Google Scholar 

  45. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular crystallography. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  46. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001)

    Article  CAS  Google Scholar 

  47. Delano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, 2002)

    Google Scholar 

  48. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the American Chemical Society Petroleum Research Fund (A.C.R.), funds from the David and Lucile Packard Foundation (A.C.R.), and the NIH (A.C.R.). R.L.L. was supported in part by a NIH training grant. We thank D. Shrestha for assistance cultivating M. capsulatus (Bath), M. Sommerhalter for assistance with data collection, J. Brunzelle for suggestions, Z. Wawrzak for assistance with data collection, and B. Hoffman, T. Stemmler, and K. Karlin for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Rosenzweig.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table S1

Data collection and refinement statistics for pMMO crystal structure determination. (DOC 30 kb)

Supplementary Figure S1

Patch of unmodelled electron density in the pmoB subunit with duroquinone superimposed. (DOC 1366 kb)

Supplementary Figure S2

Electrostatic surface representation of the pMMO protomer. (DOC 1149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieberman, R., Rosenzweig, A. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182 (2005). https://doi.org/10.1038/nature03311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03311

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing