
pseudo-free CC of the unambiguous solution were 67%, 93% and 70.0%, respectively,
compared to 38%, 84% and 54.6% for the enantiomorph. The unambiguous solution was
then analysed to decide which of the 11 sites corresponded to the 10 Se sites of RNase
Z. Non-crystallographic symmetry (NCS) operations from11 heavy atom sites were found
automatically using FINDNCS22,26. This results in one NCS for a maximum of 8 matching
pairs. The 8 Se positions were refined and phasing was performed with CNS13. The
resulting phases were extended to 2.2 Å using the CNS density modification procedure.
These phases were used to begin automatic model building and refinement using
warpNtrace27 and the peak data set with a resolution of 2.1 Å. The resulting ARP model
contained 69.4% of the dimer’s backbone atoms and 47.5% of the RNase Z sequence. The
R factor and R free values for the refinement at this step were 27.1% and 34.1%, respectively.

The initial model provided by ARP was completed and adjusted with the programO28,
first with the solvent-flattened MAD map, then with the combined model and
experimental phases (as calculated by CNS). Refinement was performed using CNS and
the peak data set at 2.1 Å resolution. Standard protocols of structure refinement with
experimental phases (Hendrickson–Lattman coefficients from MAD phasing), including
energy minimization, both before and after simulated annealing (using torsion angle
dynamics), bulk solvent correction and anisotropic B-factors (applies the isotropic
component of the correction to the model and the anisotropic component to the observed
data) were used. Each round of refinement was alternated with a round ofmanual refitting
using the cross-validated, sigma-A weighted, phase combined 2Fo–F c and Fo–F c maps.
Progress in the model refinement was evaluated by decrease in the free R-factor.

The current model includes 566 residues (1–158, 197–307 for the A subunit, and
1–236, 247–307 for the B subunit), two Zn2þ ions, a phosphate ion and 176 water
molecules. Residues 159–196 of the A subunit and 237–246 of the B subunit were not
visible in the electronic density maps, and are omitted in the final molecular model.
Superposition of 518 a-carbon atoms from the A and B subunits (residues 1–158, 197–236
and 247–307) results in an r.m.s.d. of 1.76 Å.
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