Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Happy centenary, photon

A Corrigendum to this article was published on 15 March 2007

Abstract

One hundred years ago Albert Einstein introduced the concept of the photon. Although in the early years after 1905 the evidence for the quantum nature of light was not compelling, modern experiments — especially those using photon pairs — have beautifully confirmed its corpuscular character. Research on the quantum properties of light (quantum optics) triggered the evolution of the whole field of quantum information processing, which now promises new technology, such as quantum cryptography and even quantum computers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of Clauser's experiment with correlated pairs of photons (simplified).
Figure 2: Single-photon double-slit interference.
Figure 3: Bunching (left) or antibunching (right) behaviour of photon pairs.
Figure 4: A mind-boggling interference experiment (from ref. 21).
Figure 5: Bell tests violating local realistic predictions.
Figure 6: Sketch of an experimental test of the GHZ argument against local realistic theories (from ref. 31).
Figure 7: Photon–atom interaction.
Figure 8: Quantum cryptography in practice.
Figure 9: Schematic setup of quantum state teleportation across the river Danube (from ref. 52).

Similar content being viewed by others

References

  1. Einstein, A. Zur Elektrodynamik bewegter Körper. Ann. Phys. 17, 891–921 (1905).

    Article  MATH  Google Scholar 

  2. Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17, 132–148 (1905).

    Article  CAS  MATH  Google Scholar 

  3. Lewis, G. N. The conservation of photons. Nature 118, 874–875 (1926).

    Article  ADS  CAS  Google Scholar 

  4. Clauser, J. F. Experimental distinction between the classical and quantum field-theoretic predictions for the photoelectric effect. Phys. Rev. D 9, 853–860 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Burnham, D. C. & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84–87 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H. & Zeilinger, A. A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675–1680 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1976).

    Article  ADS  Google Scholar 

  8. Diedrich, F. & Walther, H. Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Taylor, G. I. Interference fringes with feeble light. Proc. Camb. Phil. Soc. Math. Phys. Sci. 15, 114–115 (1909).

    Google Scholar 

  10. Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interference. Europhys. Lett. 1, 173–179 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Dopfer, B. Zwei Experimente zur Interferenz von Zwei-Photon Zuständen: Ein Heisenbergmikroskop und Pendellösung. PhD thesis, Universtät Innsbruck (1998).

    Google Scholar 

  12. Zeilinger, A. Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288–S297 (2000).

    Article  Google Scholar 

  13. Feynman, R. P., Leighton, R. B. & Sands, M. L. The Feynman Lectures on Physics Vol. 3 (Addison-Wesley, Massachusetts, 1965).

    MATH  Google Scholar 

  14. Brukner, C. & Zeilinger, A. Nonequivalence between stationary matter wave optics and stationary light optics. Phys. Rev. Lett. 79, 2599–2603 (1997).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  15. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Bohr, N. in Albert Einstein: Philosopher-Scientist VII (ed. Schilipp, P. A.) Vol. 7, 201–241 (Library of Living Philosophers, Evanston, 1949).

    Google Scholar 

  18. Englert, B. -G. Fringe visibility and which-way information: An inequality. Phys. Rev. Lett. 77, 2154–2157 (1997).

    Article  ADS  Google Scholar 

  19. Wheeler, J. A. in Problems in the Foundations of Physics. Proc. Intl. School of Physics ‘Enrico Fermi’, Course LXXII. (ed. di Francia, G. T.) 395–492 (North-Hollands, Amsterdam, 1979).

    Google Scholar 

  20. Scully, M. O. & Drühl, K. Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25, 2208–2213 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Zou, X. Y., Wang, L. J. & Mandel, L. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318–321 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Einstein, A., Podolsky, B. & Rosen, N. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article  ADS  CAS  MATH  Google Scholar 

  23. Bell, J. S. On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964).

    Article  MathSciNet  Google Scholar 

  24. Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).

    Article  ADS  CAS  Google Scholar 

  25. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982).

    Article  ADS  Google Scholar 

  26. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  27. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  28. Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell's Theorem, Quantum Theory, and Conceptions of the Universe (ed. Kafatos, M.) 73–76 (Kluwer, Dordrecht, 1989).

    Google Scholar 

  30. Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Pan, J. -W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–518 (2000).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  32. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  33. Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Legero, T., Wilk, T., Kuhn, A. & Rempe, G. Time-resolved two-photon quantum interference. Appl. Phys. B 77, 797–802 (2003).

    Article  ADS  CAS  Google Scholar 

  35. Pinkse, P., Fischer, T., Maunz, P. & Rempe, G. Trapping an atom with single photons. Nature 404, 365–368 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hood, C. J., Lynn, T. W., Doherty, A. C., Parkins, A. S. & Kimble, H. J. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science 287, 1447–1453 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Nogues, G. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999).

    Article  ADS  CAS  Google Scholar 

  38. Wiesner, S. Conjugate coding. SIGACT News 15, 78–88 (1983).

    Article  MATH  Google Scholar 

  39. Bennett, C. H. & Brassard, G. in Proc. IEEE Intl.Conf. on Computers, Systems and Signal Processing 175–179 (IEEE, Bangalore, 1984).

    Google Scholar 

  40. Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  41. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  42. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  CAS  MATH  Google Scholar 

  43. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998).

    Article  ADS  CAS  Google Scholar 

  45. Aspelmeyer, M. et al. Long-distance free-space distribution of quantum entanglement. Science 301, 621–623 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Kurtsiefer, C. et al. A step towards global key distribution. Nature 419, 450 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Hughes, R. J., Nordholt, J. E., Derkacs, D. & Peterson, C. G. Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4 43, 1–43 (2002).

    Google Scholar 

  48. Stucki, D., Gisin, N., Guinnard, O., Ribordy, G. & Zbinden, H. Quantum key distribution over 67 km with a plug&play system. New J. Phys. 4 41, 1–41 (2002).

    Google Scholar 

  49. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  MATH  Google Scholar 

  50. Poppe, A. et al. Practical quantum key distribution with polarization entangled photons. Opt. Express 12, 3865–3871 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Ursin, R. et al. Quantum teleportation across the Danube. Nature 430, 849 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Briegel, H. -J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  CAS  Google Scholar 

  54. Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  PubMed  Google Scholar 

  55. Jennewein, T., Weihs, G., Pan, J. -W. & Zeilinger, A. Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  56. Blinov, B. B., Moehring, D. L., Duan, L. -M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurasek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  CAS  Google Scholar 

  59. Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2000).

    Article  ADS  CAS  Google Scholar 

  60. Sanaka, K., Jennewein, T., Pan, J. -W., Resch, K. & Zeilinger, A. Experimental nonlinear sign shift for linear optics quantum computation. Phys. Rev. Lett. 92, 017902 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  61. Pittman, T. B., Fitch, M. J., Jacobs, B. C. & Franson, J. D. Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68, 032316 (2003).

    Article  ADS  CAS  Google Scholar 

  62. O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Gasparoni, S., Pan, J. -W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  64. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Walther, P. et al. Experimental one-way quantum computing. Nature (in the press).

  66. Steane, A. Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  67. Shor, P. in Proc. 37th Symp. on Foundations of Computer Science 15–65 (IEEE Computer Society Press, Los Alamitos, 1996).

    Google Scholar 

  68. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 679011–679014 (2002).

    Article  CAS  Google Scholar 

  69. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2002).

    Article  ADS  CAS  Google Scholar 

  70. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Grangier, P., Sanders, B. & Vuckovic, J. (eds) Focus on Single Photons on Demand New J. Phys. (Spec. Edn) 6, 85–100 (2004).

  72. Brattke, S., Varcoe, B. T. H. & Walther, H. Generation of photon number states on demand via cavity quantum electrodynamics. Phys. Rev. Lett. 86, 3534–3537 (1999).

    Article  ADS  CAS  Google Scholar 

  73. Kim, J., Takeuchi, S., Yamamoto, Y. & Hogue, H. H. Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902–904 (1999).

    Article  ADS  CAS  Google Scholar 

  74. Slusher, R. E., Hollberg, L. W., Yurke, B., Mertz, J. C. & Valley, J. F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Schleich, W. P. Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001).

    Book  MATH  Google Scholar 

  77. Bachor, H. -A. & Ralph, T. C. A Guide to Experiments in Quantum Optics 2nd edn (Wiley-VCH, Weinheim, 2004).

    Book  Google Scholar 

  78. Grosshans, F., Assche, G. V., Wenger, J., Cerf, R. B. J. & Grangier, P. Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Dirac, P. A. M. Emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927).

    Article  ADS  CAS  MATH  Google Scholar 

  80. Everett, H. “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 24, 454–462 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  81. Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys. Rev. 85, 166–179, 180–193 (1952).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  82. Rauschenbeutel, A. et al. Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999).

    Article  ADS  CAS  Google Scholar 

  83. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. & Zeilinger, A. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Lenard, P. Über die lichtelektrische Wirkung. Ann. Phys. 8, 149–198 (1902).

    Article  Google Scholar 

  85. Millikan, R. A. A direct photoelectric determination of Planck's h. Phys. Rev. 7, 355–388 (1915).

    Article  ADS  Google Scholar 

  86. Millikan, R. A. Albert Einstein on his seventieth birthday. Rev. Mod. Phys. 21, 343–345 (1949).

    Article  ADS  MATH  Google Scholar 

  87. Compton, A. H. The spectrum of scattered X-rays. Phys. Rev. 22, 409–413 (1923).

    Article  ADS  CAS  Google Scholar 

  88. Bothe, W. & Geiger, H. Über das Wesen des Comptoneffekts; ein experimenteller Beitrag zur Theorie der Strahlung. Z. Phys. 32, 639–663 (1925).

    Article  ADS  Google Scholar 

  89. Stuewer, R. The Compton Effect: Turning Point in Physics (Science History, New York, 1975).

    Google Scholar 

  90. Tu, L. -C., Luo, J. & Gillies, G. T. The mass of the photon. Rep. Prog. Phys. 68, 77–130 (2004).

    Article  ADS  CAS  Google Scholar 

  91. Cocconi, G. Upper limits on the electric charge of the photon. Am. J. Phys. 60, 750–751 (1992).

    Article  ADS  Google Scholar 

  92. Weinberg, S. Light as a fundamental particle. Phys. Today 28, 35–37 (1975).

    Article  Google Scholar 

  93. Lawrence, E. O. & Beams, J. W. The element of time in the photoelectric effect. Phys. Rev. 32, 478–485 (1928).

    Article  ADS  CAS  Google Scholar 

  94. Forrester, A. T., Gudmundsen, R. A. & Johnson, P. Photoelectric mixing of incoherent light. Phys. Rev. 90, 1691–1700 (1955).

    Article  ADS  Google Scholar 

  95. Clauser, J. F. Experimental limitations to the validity of semiclassical radiation theories. Phys. Rev. A 6, 49–54 (1972).

    Article  ADS  Google Scholar 

  96. Klein, M. J. Einstein's first paper on quanta. Nat. Phil. 2, 59–86 (1963).

    Google Scholar 

  97. Stachel, J. et al. in The Collected Papers of Albert Einstein (eds Stachel, J. et al.) Vol. 2, 134–148 (Princeton Univ. Press, Princeton, 1989).

    Google Scholar 

  98. Pais, A. Einstein and the quantum theory. Rev. Mod. Phys. 51, 863–914 (1979).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  99. Clauser, J. F. in Quantum [Un]speakables: From Bell to Quantum Information (eds Bertlmann, R. A. & Zeilinger, A.) 61–98 (Springer, Heidelberg, 2002).

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledge wonderful collaborations and challenging discussions with many colleagues and friends in the worldwide quantum optics community over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Zeilinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeilinger, A., Weihs, G., Jennewein, T. et al. Happy centenary, photon. Nature 433, 230–238 (2005). https://doi.org/10.1038/nature03280

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03280

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing