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HO induction
Strains were grown in YP-lactate (1% Bacto yeast extract, 2% Bacto peptone, 3% lactic
acid, pH 5.5) and HO induction was done as described previously4.

5 0 -3 0 strand resection at a DSB
Resection was measured as a rate of HO-cut band disappearance. In some cases the
resection of sequences distant from the break was also measured. Purified genomic
DNA, digested with EcoRI (Fig. 3) or StyI (Fig. 4), was separated on a 1% agarose gel,
transferred to Hybond Nþ and probed with 32P-labelled DNA from MATa and from
sequences 20 kb proximal to the DSB to establish the rate of resection. Hybridization to
HIS4 or LEU2 (bothmore than 100 kb away) was used to normalize the amount of DNA at
each time point. The rate of resection at each time point was plotted as the percentage of
the density of the initial cut band. The density of the HO-cut band at t ¼ 1 h was set to
100%.

NHEJ efficiency
NHEJ was examined in a donorless cdc28-as1 strain. 1-NMPP1 inhibitor was added
30min before HO induction. Re-cutting of MATa by HO was prevented by filtering cells
out of galactose-containing medium 30min after DSB induction and diluting cells into
YP-dextrose. (1% Bacto yeast extract, 2% Bacto peptone, 2% dextrose, pH 5.5). The
efficiency of NHEJ was determined as the intensity of the MATa-containing restriction
fragment 3 h after HO induction, normalized to the amount of DNA.

Analysis of homologous recombination
MAT switching and other homologous recombination events were analysed on
Southern blots4. For MAT switching, genomic DNA was digested with StyI and BglII
(Fig. 2a) or with StyI (Fig. 2b–d) and probed with a MAT-distal probe. For allelic
recombination, DNAwas digested with BglII and PvuI and probed with the MAT-distal
probe to check the efficiency of HO induction and with a MAT-proximal probe to check
the appearance of the product. Initial new DNA synthesis after strand invasion was
determined by polymerase chain reaction as described4, normalized to the amount of
ARG5,6 DNA.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was performed as described previously4,6. Antibodies
against Mre11, Rad51 and RPAwere provided by J. H. J. Petrini, A. Shinohara and S. Brill,
respectively.

Western blots
Protein extracts were performed as described3. Antibodies used for western blots were
Rad53 polyclonal antibody JD47 (a gift from J. Diffley), Mre11 polyclonal antibody
(produced by the IFOM antibody facility) and monoclonal antibodies 9E10 (anti-Myc
epitope), 12CA5 (anti-HA (haemagglutinin) epitope) and 6D2 (ref. 11) (anti-B subunit).
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In this Letter, the following sentence should have appeared after the
author’s email address: ‘Coordinates and structure factors have been
deposited in the Protein Data Bank under accession number
1U7K.’. A

letters to nature

NATURE |VOL 431 | 21 OCTOBER 2004 | www.nature.com/nature 1017


	Erratum: High-resolution structure of a retroviral capsid hexameric amino-terminal domain

