Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insights into assembly from structural analysis of bacteriophage PRD1

Abstract

The structure of the membrane-containing bacteriophage PRD1 has been determined by X-ray crystallography at about 4 Å resolution. Here we describe the structure and location of proteins P3, P16, P30 and P31. Different structural proteins seem to have specialist roles in controlling virus assembly. The linearly extended P30 appears to nucleate the formation of the icosahedral facets (composed of trimers of the major capsid protein, P3) and acts as a molecular tape-measure, defining the size of the virus and cementing the facets together. Pentamers of P31 form the vertex base, interlocking with subunits of P3 and interacting with the membrane protein P16. The architectural similarities with adenovirus and one of the largest known virus particles PBCV-1 support the notion that the mechanism of assembly of PRD1 is scaleable and applies across the major viral lineage formed by these viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture and structural components of bacteriophage PRD1.
Figure 2: Switching of the P3 termini.
Figure 3: Vertex organization.

Similar content being viewed by others

References

  1. Bamford, J. K. et al. Diffraction quality crystals of PRD1, a 66-MDa dsDNA virus with an internal membrane. J. Struct. Biol. 139, 103–112 (2002)

    Article  CAS  Google Scholar 

  2. Rydman, P. S. et al. Bacteriophage PRD1 contains a labile receptor-binding structure at each vertex. J. Mol. Biol. 291, 575–587 (1999)

    Article  CAS  Google Scholar 

  3. Rydman, P. S., Bamford, J. K. & Bamford, D. H. A minor capsid protein P30 is essential for bacteriophage PRD1 capsid assembly. J. Mol. Biol. 313, 785–795 (2001)

    Article  CAS  Google Scholar 

  4. Mindich, L., Bamford, D., McGraw, T. & Mackenzie, G. Assembly of bacteriophage PRD1: particle formation with wild-type and mutant viruses. J. Virol. 44, 1021–1030 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Stromsten, N. J., Bamford, D. H. & Bamford, J. K. The unique vertex of bacterial virus PRD1 is connected to the viral internal membrane. J. Virol. 77, 6314–6321 (2003)

    Article  CAS  Google Scholar 

  6. Gowen, B., Bamford, J. K., Bamford, D. H. & Fuller, S. D. The tailless icosahedral membrane virus PRD1 localizes the proteins involved in genome packaging and injection at a unique vertex. J. Virol. 77, 7863–7871 (2003)

    Article  CAS  Google Scholar 

  7. Bamford, D. H., Caldentey, J. & Bamford, J. K. Bacteriophage PRD1: a broad host range dsDNA tectivirus with an internal membrane. Adv. Virus Res. 45, 281–319 (1995)

    Article  CAS  Google Scholar 

  8. Grahn, A. M., Daugelavicius, R. & Bamford, D. H. Sequential model of phage PRD1 DNA delivery: active involvement of the viral membrane. Mol. Microbiol. 46, 1199–1209 (2002)

    Article  CAS  Google Scholar 

  9. Grahn, A. M., Daugelavicius, R. & Bamford, D. H. The small viral membrane-associated protein P32 is involved in bacteriophage PRD1 DNA entry. J. Virol. 76, 4866–4872 (2002)

    Article  CAS  Google Scholar 

  10. Butcher, S. J., Bamford, D. H. & Fuller, S. D. DNA packaging orders the membrane of bacteriophage PRD1. EMBO J. 14, 6078–6086 (1995)

    Article  CAS  Google Scholar 

  11. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833 (1999)

    Article  CAS  Google Scholar 

  12. Belnap, D. M. & Steven, A. C. ‘Deja vu all over again’: the similar structures of bacteriophage PRD1 and adenovirus. Trends Microbiol. 8, 91–93 (2000)

    Article  CAS  Google Scholar 

  13. Bamford, D. H., Burnett, R. M. & Stuart, D. I. Evolution of viral structure. Theor. Popul. Biol. 61, 461–470 (2002)

    Article  Google Scholar 

  14. Yan, X. et al. Structure and assembly of large lipid-containing dsDNA viruses. Nature Struct. Biol. 7, 101–103 (2000)

    Article  CAS  Google Scholar 

  15. Nandhagopal, N. et al. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc. Natl Acad. Sci. USA 99, 14758–14763 (2002)

    Article  ADS  CAS  Google Scholar 

  16. San Martín, C. et al. Combined EM/X-ray imaging yields a quasi-atomic model of the adenovirus-related bacteriophage PRD1 and shows key capsid and membrane interactions. Structure 9, 917–930 (2001)

    Article  Google Scholar 

  17. San Martín, C. et al. Minor proteins, mobile arms and membrane-capsid interactions in the bacteriophage PRD1 capsid. Nature Struct. Biol. 9, 756–763 (2002)

    Article  Google Scholar 

  18. Cockburn, J. J., Bamford, J. K., Grimes, J. M., Bamford, D. H. & Stuart, D. I. Crystallization of the membrane-containing bacteriophage PRD1 in quartz capillaries by vapour diffusion. Acta Crystallogr. D 59, 538–540 (2003)

    Article  CAS  Google Scholar 

  19. Cockburn, J. J. et al. Membrane structure and interactions with protein and DNA in bacteriophage PRD1. Nature doi:10.1038/nature03053 (this issue)

  20. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. The X-ray crystal structure of P3, the major coat protein of the lipid-containing bacteriophage PRD1, at 1.65 Å resolution. Acta Crystallogr. D 58, 39–59 (2002)

    Article  Google Scholar 

  21. Li, X., Romero, P., Rani, M., Dunker, A. K. & Obradovic, Z. Predicting protein disorder for N-, C-, and internal regions. Genome Informatics 10, 30–40 (1999)

    CAS  PubMed  Google Scholar 

  22. Stuart, D. I., Levine, M., Muirhead, H. & Stammers, D. K. Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 Å. J. Mol. Biol. 134, 109–142 (1979)

    Article  CAS  Google Scholar 

  23. Liddington, R. C. et al. Structure of simian virus 40 at 3.8 Å resolution. Nature 354, 278–284 (1991)

    Article  ADS  CAS  Google Scholar 

  24. Grimes, J. M. et al. The atomic structure of the bluetongue virus core. Nature 395, 470–478 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Chiu, W., Burnett, R. M. & Garcea, R. L. in Structural Biology of Viruses (eds Chiu, W., Burnett, R. M. & Garcea, R. L.) 209–238 (Oxford Univ. Press, New York, 1997)

    Google Scholar 

  26. Caldentey, J., Tuma, R. & Bamford, D. H. Assembly of bacteriophage PRD1 spike complex: role of the multidomain protein P5. Biochemistry 39, 10566–10573 (2000)

    Article  CAS  Google Scholar 

  27. Sokolova, A. et al. Solution structure of bacteriophage PRD1 vertex complex. J. Biol. Chem. 276, 46187–46195 (2001)

    Article  CAS  Google Scholar 

  28. Xu, L., Benson, S. D., Butcher, S. J., Bamford, D. H. & Burnett, R. M. The receptor binding protein P2 of PRD1, a virus targeting antibiotic-resistant bacteria, has a novel fold suggesting multiple functions. Structure 11, 309–322 (2003)

    Article  CAS  Google Scholar 

  29. Jaatinen, S., Viitanen, S., Bamford, D. H. & Bamford, J. K. The integral membrane protein P16 of bacteriophage PRD1 stabilizes the adsorption vertex structure. J. Virol. 78, 9790–9797 (2004)

    Article  CAS  Google Scholar 

  30. Luo, C., Butcher, S. & Bamford, D. H. Isolation of a phospholipid-free protein shell of bacteriophage PRD1, an Escherichia coli virus with an internal membrane. Virology 194, 564–569 (1993)

    Article  CAS  Google Scholar 

  31. Stewart, P. L., Fuller, S. D. & Burnett, R. M. Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J. 12, 2589–2599 (1993)

    Article  CAS  Google Scholar 

  32. Bamford, D. & Mindich, L. Structure of the lipid-containing bacteriophage PRD1: disruption of wild-type and nonsense mutant phage particles with guanidine hydrochloride. J. Virol. 44, 1031–1038 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bamford, J. K. et al. Genome organization of membrane-containing bacteriophage PRD1. Virology 183, 658–676 (1991)

    Article  CAS  Google Scholar 

  34. Rydman, P. S. & Bamford, D. H. Bacteriophage PRD1 DNA entry uses a viral membrane-associated transglycosylase activity. Mol. Microbiol. 37, 356–363 (2000)

    Article  CAS  Google Scholar 

  35. Rydman, P. S. & Bamford, D. H. The lytic enzyme of bacteriophage PRD1 is associated with the viral membrane. J. Bacteriol. 184, 104–110 (2002)

    Article  CAS  Google Scholar 

  36. Thuman-Commike, P. A. et al. Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids. Biophys. J. 76, 3267–3277 (1999)

    Article  CAS  Google Scholar 

  37. Morais, M. C. et al. Bacteriophage phi29 scaffolding protein gp7 before and after prohead assembly. Nature Struct. Biol. 10, 572–576 (2003)

    Article  CAS  Google Scholar 

  38. Journet, L., Agrain, C., Broz, P. & Cornelis, G. R. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302, 1757–1760 (2003)

    Article  ADS  CAS  Google Scholar 

  39. Burnett, R. M. The structure of the adenovirus capsid. II. The packing symmetry of hexon and its implications for viral architecture. J. Mol. Biol. 185, 125–143 (1985)

    Article  CAS  Google Scholar 

  40. Sambrook, J. & Russell, D. W. Molecular Cloning: a Laboratory Manual 3rd edn (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001)

    Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  42. Collaborative Computational Project, Number 4. The CCP 4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  43. Brunger, A. T. X-PLOR, Version 3.1: A system for X-ray crystallography and NMR (Yale Univ. Press, New Haven, Connecticut, 1992)

    Google Scholar 

  44. DeLano, W. L. & Brunger, A. T. The direct rotation function – rotational Patterson correlation search applied to molecular replacement. Acta Crystallogr. D 51, 740–748 (1995)

    Article  CAS  Google Scholar 

  45. Diprose, J. M. et al. Translocation portals for the substrates and products of a viral transcription complex: the bluetongue virus core. EMBO J. 20, 7229–7239 (2001)

    Article  CAS  Google Scholar 

  46. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  47. Sonnhammer, E. L. L., von Heijne, G. & Krogh, A. in Proc. Sixth International Conference on Intelligent Systems for Molecular Biology (ed. Glasgow, J.) 175–182 (AAAI Press, Menlo Park, California, 1998)

    Google Scholar 

  48. Esnouf, R. M. Polyalanine reconstruction from Cα positions using the program CALPHA can aid initial phasing of data by molecular replacement procedures. Acta Crystallogr. D 53, 665–672 (1997)

    Article  CAS  Google Scholar 

  49. Frishman, D. & Argos, P. Seventy-five percent accuracy in protein secondary structure prediction. Proteins 27, 329–335 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.-L. Perälä and S. Ollila for technical assistance, the staff at the European Synchrotron Radiation Facility for beamline support, and E. Mancini for assistance with data collection. This investigation was supported by research grants from the Academy of Finland to J.K.H.B. and S.J.B., research grants and the Finnish Centre of Excellence Program (2000–2005) from the Academy of Finland to D.H.B., a grant from the National Science Foundation to R.M.B., the Biotechnology and Biological Sciences Research Council and the Medical Research Council, UK and a grant from the Human Frontiers Science Program to D.I.S., R.M.B. and D.H.B. S.D.F. is supported by the Wellcome Trust, J.M.G. by the Royal Society and D.I.S. by the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David I. Stuart or Jaana K. H. Bamford.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure

Curves of data completeness and correlation coefficient versus resolution for cell1 and cell2 data. (DOC 416 kb)

Supplementary Methods

Describes the calculation of packing density in the cavity under the vertex. (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrescia, N., Cockburn, J., Grimes, J. et al. Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432, 68–74 (2004). https://doi.org/10.1038/nature03056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03056

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing