Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lead-free piezoceramics

Abstract

Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are high-performance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there has been a concerted effort to develop lead-free piezoelectric ceramics, no effective alternative to PZT has yet been found1,2,3,4,5,6,7,8,9,10,11,12,13,14. Here we report a lead-free piezoelectric ceramic with an electric-field-induced strain comparable to typical actuator-grade PZT. We achieved this through the combination of the discovery of a morphotropic phase boundary in an alkaline niobate-based perovskite solid solution, and the development of a processing route leading to highly 〈001〉 textured polycrystals. The ceramic exhibits a piezoelectric constant d33 (the induced charge per unit force applied in the same direction) of above 300 picocoulombs per newton (pC N-1), and texturing the material leads to a peak d33 of 416 pC N-1. The textured material also exhibits temperature-independent field-induced strain characteristics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Piezoelectric sensor performances for the lead-free (LF) piezoelectric ceramics.
Figure 2: Schematic diagram of topochemical conversion from bismuth layer-structured BiNN5 particles to plate-like NaNbO3 particles.
Figure 3: SEM images of etched cross-sections and X-ray diffraction profiles of textured and non-textured ceramics.
Figure 4: Actuator performances of the developed lead-free piezoelectric ceramics.

Similar content being viewed by others

References

  1. Haertling, G. E. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  2. Takenaka, T. & Nagata, H. Present status of non-lead-based piezoelectric ceramics. Key Eng. Mater. 157–158, 57–64 (1999)

    Google Scholar 

  3. Jaeger, R. E. & Egerton, L. Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45, 209–213 (1962)

    Article  CAS  Google Scholar 

  4. Dungan, R. H. & Golding, R. D. Polarization of NaNbO3-KNbO3 ceramic solid solutions. J. Am. Ceram. Soc. 48, 601 (1965)

    Article  CAS  Google Scholar 

  5. Haertling, G. H. Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329–330 (1967)

    Article  CAS  Google Scholar 

  6. Egerton, L. & Bieling, C. A. Isostatically hot-pressed sodium-potassium niobate transducer material for ultrasonic devices. Ceram. Bull. 47, 1151–1156 (1968)

    CAS  Google Scholar 

  7. Aurivillius, B. Mixed bismuth oxides with layer lattices. Ark. Kemi 1, 499 (1949)

    CAS  Google Scholar 

  8. Wood, A. Polymorphism in potassium niobate, sodium niobate, and other ABO3 compounds. Acta Crystallogr. 4, 353–362 (1951)

    Article  CAS  Google Scholar 

  9. Buhrer, C. F. Some properties of bismuth perovskites. J. Chem. Phys. 36, 798–803 (1962)

    Article  ADS  CAS  Google Scholar 

  10. Nitta, T. Properties of sodium-lithium niobate solid solution ceramics with small lithium concentrations. J. Am. Ceram. Soc. 51, 626–629 (1968)

    Article  CAS  Google Scholar 

  11. Scot, B. A., Giess, E. A., Burns, G. & O'Kane, D. F. Alkali-rare earth niobates with the tungsten bronze-type structure. Mater. Res. Bull. 3, 831–842 (1968)

    Article  Google Scholar 

  12. Hellwege, K.-H., Hellwege, A. M., Mitsui, T. & Nomura, S. (eds) Numerical Data and Functional Relationships in Science and Technology, New Series Group 3: Crystal and Solid State Physics, Vol. 16, Ferroelectrics and Related Substances Subvol. a, Oxides (Springer, Berlin, 1981)

  13. Mitsui, T. & Nakamura, E. (eds) Numerical Data and Functional Relationships in Science and Technology, New Series Group 3: Crystal and Solid State Physics, Vol. 28, Suppl. and Extension to Vol. 16, Ferroelectrics and Related Substances Subvol. a, Oxides (Springer, Berlin, 1990)

    Google Scholar 

  14. Takenaka, T. & Nagata, H. Program Summary and Extended Abstract of the 11th US-Japan Seminar on Dielectric and Piezoelectric Ceramics 237–244 (US-Japan seminar committee, Sapporo, Hokkaido, Japan, 2003)

    Google Scholar 

  15. Jaffe, B., Roth, R. S. & Marzullo, S. Properties of piezoelectric ceramics in the solid-solution series lead titanate zirconate-lead oxide: tin oxide and lead titanate-lead hafnate. J. Res. Natl Bur. Stand. 55, 239–254 (1955)

    Article  CAS  Google Scholar 

  16. Zhang, S. J., Randall, C. A. & Shrout, T. R. High Curie temperature piezocrystals in the BiScO3-PbTiO3 perovskite system. Appl. Phys. Lett. 83, 3150–3152 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Jaffe, B., Cook, W. R. & Jaffe, H. Piezoelectric Ceramics (Academic, New York, 1971)

    Google Scholar 

  18. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Lotgering, F. K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures — I. J. Inorg. Nucl. Chem. 9, 113–123 (1959)

    Article  CAS  Google Scholar 

  20. Takenaka, T. & Sakata, K. Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics. Jpn. J. Appl. Phys. 19, 31–39 (1980)

    Article  ADS  CAS  Google Scholar 

  21. Kimura, T., Yoshimoto, T., Iida, N., Fujita, Y. & Yamaguchi, T. Mechanism of grain orientation during hot-pressing of bismuth titanate. J. Am. Ceram. Soc. 72, 85–89 (1989)

    Article  CAS  Google Scholar 

  22. Watanabe, H., Kimura, T. & Yamaguchi, T. Sintering of platelike bismuth titanate powder compacts with preferred orientation. J. Am. Ceram. Soc. 74, 139–147 (1991)

    Article  CAS  Google Scholar 

  23. Brahmaroutu, B., Messing, G. L., Trolier-Mckinstry, S. & Selvaraj, U. in Proc. 10th IEEE Int. Symp. on Applications of Ferroelectrics Vol. 2 (eds Kulwicki, B., Amin, A. & Safari, A.) 883–886 (Institute of Electrical and Electronic Engineers (IEEE), Piscataway, NJ, 1996)

    Book  Google Scholar 

  24. Horn, J. A., Zhang, S. C., Selvaraj, U., Messing, G. L. & Trolier-McKinstry, S. Templated grain growth of textured bismuth titanate. J. Am. Ceram. Soc. 82, 921–926 (1999)

    Article  CAS  Google Scholar 

  25. Tani, T. Crystalline-oriented bulk ceramics with a perovskite-type structure. J. Korean Phys. Soc. 32(Suppl. Iss.), S1217–S1220 (1998)

    CAS  Google Scholar 

  26. Takeuchi, T., Tani, T. & Saito, Y. Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn. J. Appl. Phys. 38, 5553–5556 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Sugawara, T., Shimizu, M., Kimura, T., Takatori, K. & Tani, T. Fabrication of grain oriented barium titanate. Ceram. Trans. 136, 389–406 (2003)

    CAS  Google Scholar 

  28. Saito, Y. Measurement of complex piezoelectric d33 constant in ferroelectric ceramics under high electric field driving. Jpn. J. Appl. Phys. 34, 5313–5319 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Saito, Y. Measurement system for electric field-induced strain by use of displacement magnification technique. Jpn. J. Appl. Phys. 35, 5168–5173 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Saito, Y. Hysteresis curve of X-ray diffraction peak intensity in lead zirconate titanate ceramics. Jpn. J. Appl. Phys. 36, 5963–5969 (1997)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Takeuchi for technical contributions to the development of the processing; T. Saito for discussions; and N. Watanabe, M. Uoshima, H. Morisaka, Y. Aoki, K. Horibuchi, K. Hisazato, M. Okumura, M. Okano, K. Nomura and S. Tsuru for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyoshi Saito.

Ethics declarations

Competing interests

Patent applications have been submitted, based on data presented in this manuscript. Licensing of the patents may give financial benefits to the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, Y., Takao, H., Tani, T. et al. Lead-free piezoceramics. Nature 432, 84–87 (2004). https://doi.org/10.1038/nature03028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03028

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing